12月21日、デロイトコンサルティングが最近発表したレポートでは、企業が一貫した機械学習運用(MLOps)アプローチを実装し、維持できれば、人工知能の黄金時代が到来すると指摘されています。 AIに特化したCognilyticaが実施した市場調査を引用したこのレポートでは、MLOpsプラットフォーム市場は2025年までに年間収益40億ドル以上を生み出すと予想されていると述べている。 すでに、こうしたプラットフォームの提供に注力しているスタートアップ企業がいくつかあります。しかし、多くの企業が現在ソフトウェアの構築と展開に使用している DevOps プラットフォームの拡張として MLOps がどの程度まで機能するかについては、まだ明らかではありません。 デロイトAI研究所のエグゼクティブディレクター、ビーナ・アマナス氏は、COVID-19パンデミックをきっかけに、組織はデジタルビジネス変革を推進するためにAIへの投資を加速させていると語った。この分野は今後 18 か月でさらに活発化します。 ただし、MLOps は IT 運用のための人工知能 (AIOps) と同じではありません。前者は AI モデルを組み込んだアプリケーションを構築および展開するプロセスを指し、後者は AI を適用して IT 運用管理を自動化することを指します。 これらの MLOps プロセスは、AI モデルの構築と展開の方法だけでなく、それらの管理方法や最終的な廃止方法にも及びます。 AI モデルの主な問題の 1 つは、新しいデータ ソースが利用可能になったり、ビジネス条件が初期モデルの範囲を超えて変化したりすると、結果が時間の経過とともに変化する可能性があることです。そのため、企業は AI モデルを更新するか、完全に別のモデルに置き換える必要があります。いずれの場合も、IT チームは AI モデルによる推奨事項を継続的にテストおよび検証し、一貫性と関連性があり、倫理ガイドラインに従って動作していることを確認する必要があります。 データ サイエンティスト、開発者、データ エンジニア、品質保証、IT スタッフのチーム全体でこのレベルの活動を調整するには、MLOps に対する非常に規律のあるアプローチが必要だと Ammanath 氏は述べています。 企業が現在直面している課題は、デジタルビジネス変革を採用するにつれて、多くの既存のプロセスが時代遅れになりつつあることです。アマナス氏は、広く理解されていないビジネス プロセスに AI モデルを適用することは、何年も同じ方法で実行されてきたプロセスを自動化するよりも難しいと指摘しました。 ほぼすべてのアプリケーションは、1 つ以上の AI モデルによってさまざまな程度に強化されます。現在、課題とチャンスとなっているのは、AI モデルを大規模に構築して展開できるだけでなく、必要に応じて永久的な損傷が発生する前に AI モデルを撤回できるプラットフォームを提供することです。 |
人工知能、エッジ コンピューティング、移動中のデータの統合は、業界を変革し、コンピューティング シス...
AIの拡大する影響私たちの日常生活における AI の影響はますます明らかになってきています。 AI ...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
本日 Nature 誌に掲載された論文で、IBM Research のポスドク研究員 Stefano...
2021年の欧州選手権でイングランドはデンマークを破り、初めて欧州選手権決勝に進出した。歴史に名を残...
今年の AI 界のトップトレンドである大規模言語モデル (LLM) は概念を組み合わせるのが得意で、...
何千年もの間、人々はインテリジェントな機械を構築する方法について考え続けてきました。それ以来、人工知...
自動運転車の台頭により、都市の建設方法や都市環境における交通手段に対する考え方が一変するでしょう。 ...
Red Hat Inc. は本日、情報技術自動化のための生成 AI サービスである IBM Wats...
「文心易眼のユーザー規模が1億人を突破した」。12月28日、百度の最高技術責任者で、深層学習技術・応...
海外メディアの報道によると、グーグルは10月7日、先日開催された「Made by Google 20...
Google がゲームを撤回しました! Gemini が API を公開してから1 週間も経たないう...