Facebook、黒人男性を霊長類と認識したアルゴリズムについて謝罪

Facebook、黒人男性を霊長類と認識したアルゴリズムについて謝罪

[[422559]]

ビッグデータ概要

著者: ミッキー

6月27日に英国のデイリーメール紙が公開した動画がフェイスブックで突然人気を集めたが、注目された理由は動画自体ではなく、動画に付けられた「ラベル」にある。これは黒人に関する動画だが、動画を視聴するすべてのユーザーに「霊長類に関する動画の視聴を続けるか」を尋ねるプロンプトが表示される。

元フェイスブックのコンテンツデザインマネージャー、ダーシー・グローブス氏がこの発見をツイッターに投稿したところ、たちまち激しい怒りが巻き起こった。

その後、Facebookはすぐにこの推奨を削除し、公に謝罪した。

「これは明らかに許されないミスであり、私たちはこの問題が起きたと認識した直後にトピック推奨機能全体を無効にし、原因を調査して再発防止を図った」とフェイスブックの広報担当者ダニ・レバー氏はUSAトゥデイへの声明で述べた。

「よく言われるように、AIは改良されてきたが、まだ完璧ではなく、改善の余地が大いにあることはわかっている」と彼女は語った。 「この不快なコンテンツを閲覧した方々にお詫び申し上げます。」

討論: 人間は霊長類ではないのか?

しかし、事件後、関係コミュニティの一部の人々からは、あまり敏感になる必要はない、結局のところ、人間は霊長類の一種であり、AIの判断に問題はない、という意見が出ました。

コミュニティ内では、黒人プログラマーの中には、あまり敏感になりすぎないようにと言う者もいた。「黒人の肌の色は、特定の非人間霊長類の画像と視覚的に似ているという点については、私も個人的には認めます。この問題がプログラマーの偏見ではなく、複雑なコンピューター ビジョンの問題である理由も理解できます。コンピューターが類似点を見つけるのは簡単ですが、ニューラル ネットワークをトレーニングして、画像が互いに似ているのに関連性がない理由を理解するのは非常に困難です。」

反対派は、AIは学習したデータのみをフィードバックし、そのようなラベル付けの結果はFacebookの全体的なラベル付けシステムの大きな問題を反映していると考えている。Facebook自身によると、同社の人工知能はユーザーがアップロードした画像を使用してトレーニングされているという。

結局のところ、Facebook の AI システムがこのような「人種差別」問題を抱えたのは今回が初めてではない。 ”

人種差別に苦しむテクノロジー企業はフェイスブックだけではない

近年、Facebook は自社のアルゴリズムにおける「人種差別の排除」の問題で多大な代償を払っており、そのプロセスはかなり困難なものとなっている。同社は2018年に、住宅や雇用などの業界で広告を出す際に広告主が特定の少数派グループを排除することを許可していたとして、スキャンダルで暴露された。 Facebook 社はまた、当時の関連問題を回避するために「技術的」という用語を使用していました。たとえば、同社はユーザーを人種ではなく、いわゆる「多文化主義」によって分類していました。

そのため、Facebook は人種問題に対して常に慎重な姿勢を取り、そのために多大な努力を払ってきました。昨年7月、The Vergeは、Facebookが同社の主要ソーシャルネットワークとInstagramにおける人種的偏見、特に人工知能を使って訓練されたアルゴリズムが黒人、ヒスパニック、その他の少数民族に悪影響を及ぼしているかどうかを調査する新しい社内チームを結成していると報じた。フェイスブックの広報担当者は当時、ザ・ヴァージに対し、このチームは「我々が行うすべてのことにおいて、公正かつ公平な製品開発が行われるようにする責任を負っている」と語った。 「当社は今後もFacebookのResponsible AIチームと緊密に連携し、それぞれのプラットフォームにおける潜在的な偏見に注力していきます。」

しかし、現状の結果から判断すると、Facebook が誇るこの是正措置の影響は非常に限定的である。

もちろん、自動化システムにおける人種差別的偏見で非難を浴びているテクノロジー企業はFacebookだけではない。

2015年、グーグルは自社のアプリが黒人を誤って「ゴリラ」と認識したことについて謝罪した。しかし、2年後、一部のメディアは、Googleの解決策が非常に単純かつ粗雑であることを発見しました。検索結果から関連するラベルを直接削除したのです。つまり、写真にゴリラ、チンパンジー、サルなどのラベルを付けることが禁止されたのです。

[[422560]]

「1 人を逃がすよりも、誤って 1,000 人を殺してしまうことを好む」という Google のアプローチは残酷かもしれませんが、それはまた、一見単純な画像分類機能にまだ比較的大きな問題があることをある程度示しています。真の人工知能を実現するには、まだ長い道のりが残っています。

[この記事は51CTOコラムBig Data Digest、WeChatパブリックアカウント「Big Data Digest(id: BigDataDigest)」のオリジナル翻訳です]

この著者の他の記事を読むにはここをクリックしてください

<<:  仕事を完了するにはまだ人間が必要か?ポストパンデミック時代に急成長する自動化の長所と短所

>>:  デイリーアルゴリズム: 2 つのスタックを持つキューの実装

ブログ    
ブログ    

推薦する

いつ表面的に調べ、いつ深く掘り下げるべきか - 機械学習は1ページで説明できるものではありません

機械学習、ディープラーニング、人工知能の台頭は議論の余地のない事実となり、コンピュータサイエンスの分...

沈興陽博士:30年間の科学研究で私が遭遇した落とし穴

先日開催されたX-Talkでは、米国工学アカデミーの外国人会員であり、XiaoIce会長でもあるハリ...

Google Cloud と Hugging Face が AI インフラストラクチャ パートナーシップを締結

Google LLC のクラウド コンピューティング部門は本日、オープンソースの人工知能モデルを共有...

自動運転は本当に実現します!最初の発砲は全国7か所で行われた。

自動車市場の発展に伴い、さまざまないわゆる「ブラックテクノロジー」が自動車所有者の敏感な神経をますま...

...

5 分で年配の方に機械学習について説明しましょう。説明するのはとても簡単です!

機械学習とは何でしょうか? 機械学習について何も知らない年配の人からこの質問をされたら、どのように答...

コード不要で再利用可能な AI が AI の溝を埋める方法

著者: ミシェル・ゾウ翻訳:李睿企画丨孫淑娊[51CTO.com クイック翻訳]事前に構築された A...

屈原·漁師のアルゴリズムの追求

屈原・漁夫のアルゴリズムの追求を分析する前に、「漁夫」の原文を見てみましょう。屈原は流刑になった後、...

写真とテキスト付き!推奨アルゴリズムのアーキテクチャ - 大まかなランキング

1. 全体的なアーキテクチャ粗いソートは、リコールと細かいソートの中間のモジュールです。 。数万の候...

「5つの一般的なアルゴリズム」分岐アルゴリズムとアイデアを図解で紹介

[[355166]]この記事はWeChatの公開アカウント「bigsai」から転載したもので、著者は...

賈陽青氏がフェイスブックを辞任し、アリババ・シリコンバレー研究所の副社長に就任したことが明らかになった。

[[258639]] 3月2日の夜、知书でAI人事異動に関する大きなニュースが報じられた。Caff...

ホワイトボードに描くだけでコードに変換されます。AI は UI デザイナーに取って代わるのでしょうか?

「新製品のホームページについてどう思いますか?」あなたは、UI、フロントエンド、マーケティング、運...

電子商取引検索における人工知能技術の応用

常に注目度の高い人工知能分野に関連するアプリケーションは、常に大きな注目を集めています。人工知能は電...