携帯電話に搭載された3D姿勢推定は、モデルサイズが類似モデルの1/7しかないが、誤差はわずか5cmである。

携帯電話に搭載された3D姿勢推定は、モデルサイズが類似モデルの1/7しかないが、誤差はわずか5cmである。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

長い間、3D 姿勢推定は精度向上に向けて競争してきました。

ただし、精度の向上は計算コストの増加ももたらします。

しかし、CPVR 2021 で採択されたばかりの論文MobileHumanPoseで提案されたモデルは、小型でありながら優れたものになる可能性があります。

携帯電話でも持てるタイプです。この感覚を感じてみましょう:

次のような動きのエアロビクスでも大丈夫です。

このモデルのサイズはResNet-50をベースにしたモデルのわずか1/7であり、その計算能力は3.92GFLOPSに達することがわかります。

さらに、関節あたりの平均位置誤差(MPJPE)はわずか約5 cmです。

では、このモデルはどのようにして限られた計算能力でこのような優れたパフォーマンスを実現するのでしょうか?

エンコーダー・デコーダー構造に基づく改善

これは基本的なエンコーダー-デコーダー構造を改良したモデルです。

研究チームは、エンコーダーをグローバル特徴抽出に使用し、デコーダーを姿勢推定に使用する基本アーキテクチャに基づいて、バックボーン ネットワーク、アクティベーション関数、および Skip 連結関数を変更しました。

まず、研究チームが選択したバックボーン ネットワーク、MobileNetV2 を見てみましょう。

彼らは、MobileNetV2 の最初の 4 つの反転残差ブロックでチャネル サイズを変更し、パフォーマンスの向上を実現しました。

次に、 PReLU関数を使用して活性化関数を実装します。ここで、ai は学習パラメータ、yi は入力信号です。

この関数の学習可能なパラメータにより、ネットワークの各層で追加情報を取得できるようになり、人間の姿勢推定タスクでパラメータ化された PReLU を使用する際のパフォーマンスが向上します。

△活性化関数を変更した後のベースライン

現在、モデルの効率は低くありませんが、推論速度を考慮して、チームは Skip 連結構造を使用しています。この構造により、パフォーマンスを低下させることなく、エンコーダからデコーダへの低レベルの特徴信号を導出できます。

パラメータ数は5分の1に削減され、計算コストは​​1/3に削減されます。

研究チームは、3D 人間のポーズ データセットとして Human3.6M と MuCo-3DHP を使用し、MobileNetV2 の大規模モデルと小規模モデルという 2 つのモデルを提案しました。

Human3.6M では、MobileNetV2 大規模モデルは、関節あたりの平均位置誤差 51.44 mm を達成します。

パラメータサイズは4.07Mで、類似モデルの20.4M(chen)の5分の1であり、計算コストは​​5.49GFLOPSで、類似モデル(14.1G)の1/3以下です。

複数人物の 3D ポーズ推定タスクでは、研究者は RootNet を使用して各人物の絶対座標を推定し、MuPoTS の 20 シーンで実験を実施しました。

実験結果によると、ECCV 2020 で優勝した Zerui Chen などの研究者が提案した 3D 人間姿勢推定法と比較して、MobileNetV2 は一般的なシナリオで優れたパフォーマンスを発揮し、いくつかのシナリオで最高のパフォーマンスを発揮します。

モデル効率の面では、MobileNetV2 の大規模モデル効率は 2.24M/3.92GFLOPS であり、同様のモデルの 13.0M/10.7GFLOPS を大幅に上回っています (Zerui Chen)。

小型モデルでは、関節あたりの平均位置誤差が 56.94 mm で、パラメータ数は 224 万、計算コストは​​ 3.92 GFLOPS です。

著者について

論文の著者3人は全員韓国技術院の卒業生であり、筆頭著者のチェ・サンボム氏は同校の電気電子工学修士である。

[[427448]]

紙:
https://openaccess.thecvf.com/content/CVPR2021W/MAI/html/Choi_MobileHumanPose_Toward_Real-Time_3D_Human_Pose_Estimation_in_Mobile_Devices_CVPRW_2021_paper.html

オープンソースアドレス:
[1] https://github.com/SangbumChoi/MobileHumanPose
[2] https://github.com/ibaiGorordo/ONNX-Mobile-Human-Pose-3D

<<:  合成データのみでリアルな顔解析が可能!マイクロソフトの新しい研究は、手動ラベル付けに別れを告げる

>>:  バブルアルゴリズムよりも単純なソートアルゴリズム:バグだらけに見えるプログラムが実は正しい

ブログ    
ブログ    
ブログ    

推薦する

機械学習でデータベースを自動調整

この記事は、カーネギーメロン大学の Dana Van Aken、Andy Pavlo、Geoff G...

研究者らがRSA公開鍵生成アルゴリズムの脆弱性を発見

北京時間2月15日、研究者グループが、機密性の高いオンライン通信や取引を暗号化するためにRSAアルゴ...

顔認識アクセス制御システムが起動した後は、ゲートを簡単に通過する際に潜在的なリスクにも注意する必要があります。

かつて、伝統的な入退室管理システムとして、アクセス制御システムは、通常、カードのスワイプとパスワード...

...

データがあなたを監視することに抵抗はありませんか?

AI 技術の発展と影響に関する最近の調査、研究、予測、その他の定量的評価により、消費者はデータのプ...

ディープラーニングの未来に関する6つの予測

[51CTO.com クイック翻訳] ディープラーニングは複雑な概念であり、その中の各要素は単純では...

...

ロボットは共感を持つことができるか?感情AIはどれくらい使えるのか?

ポータブル AI アプリケーションといえば、まず Siri、Alexa、Google Assista...

機械学習の戦略原則: 基本プロセス、アルゴリズムフレームワーク、プロジェクト管理

著者: cooperyjli、Tencent CDG のデータ アナリスト機械学習は、データの収集、...

無料ですか?寄生? ChatGPTに夢中です!

51CTOウェブサイトコンテンツ調査に参加するにはクリックしてくださいマット・アセイ編纂者:Qia...

人工知能端末チップ研究レポート

1. 人工知能とディープラーニング2016年、AlphaGoとイ・セドルの囲碁対決は間違いなく、人工...

...

世界シミュレーターはAGIの最終成果、12の状況予測です!チーフエキスパートによる1万語の記事がソラのマイルストーンを専門的に解釈

私はここ数日、Sora の技術レポートと Sora のさまざまな技術分析を読んできました。基本的な視...

信頼できる GNN を構築するにはどうすればよいでしょうか?最新のレビューはコチラ!信頼できるグラフニューラルネットワーク: 次元、方法、傾向

序文ここ数年、ニューラルネットワークを中心とした人工知能技術は、さまざまな種類のデータを深く掘り下げ...

あなたの脳と音楽ストリーミングは直接つながっているのでしょうか?ニューラリンクの脳コンピューターインターフェースが来月発売予定

ヘッドホンは必要なく、脳コンピューターインターフェースを通じて直接音楽を聴くことができ、体内のホルモ...