GPT+Copilotを使えば、Rustの学習はすぐに始まります

GPT+Copilotを使えば、Rustの学習はすぐに始まります

みなさんこんにちは。私は漁師です。

Rust の学習曲線は初期段階と中期段階では急峻になりますが、今日では AI の支援があり、どのプログラミング言語を学ぶこともそれほど難しくないようです。わからない場合は、GPT に尋ねてください。少なくとも初期段階では、問題をすぐに解決できるようになります。

例えば、CSV ファイルを読み取りたい場合、GPT に直接アクセスして参照することができます。

CSV ファイルの内容も自動的に生成されるので、非常に効率的です。

まず、外部パッケージ(csv パッケージと serde パッケージ)を追加しましょう。これらのパッケージは、Cargo.toml ファイルに追加することでインポートできます。

あるいは、次のコマンドラインを追加します。

 cargo add serde --features derivecargo add csv cargo add serde --features derive

追加した後、このファイルを走査して、実際にデータがあるかどうかを確認します。

コードは次のとおりです。

 use csv::Reader; use std::error::Error; const CSV_PATH: &str = "./large_file.csv"; fn main() -> Result<(), Box<dyn Error>> { let mut rdr = Reader::from_path(CSV_PATH)?; for result in rdr.records() { let record = result?; println!("{:?}", record); } Ok(()) }

実行結果はこれらのデータを生成するのに非常に役立ちます。

 cargo run Finished dev [unoptimized + debuginfo] target(s) in 0.04s Running `target/debug/rust-demo9` StringRecord(["Alice", "30", "New York"]) StringRecord(["Bob", "25", "Los Angeles"]) StringRecord(["Charlie", "35", "Chicago"]) StringRecord(["David", "40", "Houston"]) StringRecord(["Eve", "28", "Philadelphia"]) StringRecord(["Frank", "33", "Phoenix"]) StringRecord(["Grace", "22", "San Antonio"]) StringRecord(["Henry", "45", "San Diego"]) StringRecord(["Ivy", "29", "Dallas"]) StringRecord(["Jake", "38", "San Jose"]) %

Age 列のデータだけを読み取りたい場合は、GPT に直接相談すれば、解決を手伝ってもらえます。コードのすべての行を説明してくれるので、初心者にとっては非常に助かります。

 use csv::Reader; use std::error::Error; const CSV_PATH: &str = "./large_file.csv"; fn main() -> Result<(), Box<dyn Error>> { let mut rdr = Reader::from_path(CSV_PATH)?; for result in rdr.records() { let record = result?; println!("{}", record.get(1).unwrap_or_default()); } Ok(()) }

3 列目のデータを取得したい場合は、vscode で直接 GitHub Copilot を参照することもできます。問題がないと思われる場合は、[Accept] を直接クリックして、提供されるコードを参照できます。基本的な変更にも非常に便利です。ただし、一部の基本的なコードと繰り返しコードは Copilot によって自動的に生成されるため、効率も大幅に向上します。

結果は次のとおりです。

最後に、どんな言語でも学習すれば、困難は大幅に軽減されます。AI をプロダクト マネージャーとして扱い、要件を提供し、最終的に AI にコード開発を手伝わせることもできます。実際にレビューを行い、AI に書き方が下手な部分の修正を続けさせるか、魔法のような修正を行った後、基本的にそれを使用することができます。仕事で繰り返し使用するコードのほとんどをゼロから学ぶ必要はありませんが、ツールの使い方を学べばよいのです。

<<:  まだ NeRF に取り組んでいますか?リアルタイムレンダリングでリアルな自動運転データを生成!ストリートガウス:すべての SOTA を超えよう!

>>: 

ブログ    
ブログ    
ブログ    

推薦する

リアルタイムで「顔」をぼかす!実践的なチュートリアル

みなさんこんにちは。今日は実践的なチュートリアルを皆さんと共有したいと思います。いつものように、まず...

Facebook、ロボット開発プラットフォームDroidletをオープンソース化

最近、Facebook は、自然言語処理とコンピューター ビジョンを使用してロボットが周囲の世界を理...

比類のない美しさ! AIが90年前の梅蘭芳を復元:目と眉毛が感情を伝え、生きているかのよう

[[407844]]約 100 年前の白黒画像にカラーを施すと、歴史的な意味がさらに増すのでしょうか...

...

...

顔認識のためのディープラーニングとオブジェクト検出のステップバイステップガイド

[[277051]]これまでの共有を通じて、顔認識の一般的なプロセスを理解しました。主に次のプロセス...

米国は自動運転に関する最も厳しい新規制を発行:L2〜L5を完全にカバー、今月30件のテスラ事故が調査された

[[408307]] IT Homeは6月30日、米国東部時間6月29日に米道路交通安全局(NHTS...

スマートロボットが顧客サービスに革命を起こす

カスタマー サービスにおけるインテリジェント ボットは顧客データを収集して分析し、消費者の行動や好み...

「緊急天使」がロボットを救出するために前進し、事態を収拾した

科学技術の進歩と社会の発展に伴い、ロボット産業は繁栄の時代を迎えています。ロボット工学は、コンピュー...

近年の人工知能の発展を理解する

[[381014]]近年、AIの波が全国を席巻し、さまざまな業界で人間の仕事がAIに置き換わっていま...

滴滴出行の米国研究責任者:インテリジェント運転は間違いなく未来を変えるだろうが、そのプロセスは単純ではない

6月20日、滴滴出行研究院副院長兼アメリカ研究院長のゴン・フェンミン博士が、TechCrunch I...

AIがサイバーセキュリティにできること、できないこと

過去数か月間にネットユーザーを最も怖がらせたものは何かと問われれば、それは以下のウイルス攻撃だろう。...

AI危機の前に、この3つの資質を備えた子供たちが将来勝利するだろう

[[234521]]文|ハオ・ジンファンSF作家第74回ヒューゴー賞受賞者公式アカウント「小唐科学子...

ChatGPT に触発されて、Google DeepMind は 7100 万の遺伝子変異を予測します。 AIが人間の遺伝学を解読

タンパク質予測モデルAlphaFoldがAIの世界に津波のような波を起こした後、Alphaファミリー...

20世紀の最も偉大なアルゴリズム10選

参考: 20 世紀のベスト: 編集者が選ぶトップ 10 アルゴリズム。著者:バリー・A・シプラ。アド...