人工知能 (AI) は、研究室から実際のアプリケーションまでどのように異なるのでしょうか?

人工知能 (AI) は、研究室から実際のアプリケーションまでどのように異なるのでしょうか?

人工知能が実際の応用に入ると、遭遇する問題のほとんどは複雑になります。 しかし、現段階では、人工知能はこれらの問題を独自に効果的に分解して情報を収集することができず、実際の作業ではデータの問題に行き詰まってしまうことがよくあります。

[[429998]]

その中で、特に顕著なのが以下の問題です。

  1. データの可用性の問題: データの所有権が原因で、大量の構造化されたビジネス データを見つけるのは非常に困難であり、または多大な労力を必要とします。
  2. ダーティデータの問題: 実際の生産プロセスでは、エネルギーの 90% 以上がデータのクリーニングに費やされています。実際のデータ生成プロセスでは、さまざまな技術的問題、人間の偏見の問題、情報のラベル付けの問題により、データエラーが発生する可能性があります。
  3. データフロー速度の問題は、ラボではモデルの精度を評価するために 2 セットのデータを使用するのが簡単だということです。しかし、実際のアプリケーションでは、将来を予測することがよくあります。このとき、実際のデータが時間内にモデルに取り込まれるかどうかが非常に重要です。

データが不十分だと、顔の特徴に基づいて犯罪の可能性を判断するなど、アルゴリズムの偏りが生じる可能性があります。

現在のビッグデータと人工知能のアルゴリズムには、検索におけるジェンダー問題や、フードデリバリーのアルゴリズムが乗客のリスク識別を支援できないことなど、依然として多数のデータギャップとバイアスが存在します。

現実の問題は非常に複雑であるため、AIの大規模な応用には社会全体のデータ利用エコシステムの改善が伴わなければならず、データセキュリティは秩序ある状態で公正かつ公平に運用されなければなりません。

<<:  スニーカーロボット大戦

>>:  空中でスクリーンに文字を書くのは魔法のようです。指をつまむだけで実現します。

ブログ    

推薦する

インテルは新しい小さな「スピン量子ビット」チップをテスト中

最近、インテルの研究者らは、新しい小さな「スピン量子ビット」チップをテストしていることを明らかにした...

初めてバーチャルヒューマンに関する業界の合意が成立

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

人工知能は最終的に人間に取って代わるのでしょうか?現時点では、あらゆる面で人間を超えることは難しいでしょう。

ここ数年、人工知能技術が徐々に発展するにつれ、社会の中で人工知能に対するさまざまな見方が現れ始めまし...

2025年までに世界のAIヘルスケア市場は272億ドルに達する

4月17日、市場調査会社リサーチ・アンド・マーケッツが最近発表したレポートでは、2025年までに世界...

製造業における人工知能の活用事例トップ10

世界経済の礎である製造業は、人工知能 (AI) が推進する技術革命の最前線にあります。この記事では、...

自動運転事故の安全問題をどう解決するか?

[[418475]]かつては空想の技術だった自動運転が、今や徐々に現実のものとなりつつある。 Go...

...

インテリジェント運転ビッグデータの最先端の研究の進歩と典型的な応用

1. はじめにインテリジェント運転とは、一般的には、自動運転や車両のインターネット(IoV)などの技...

...

市場規模は100億元を超える可能性あり。これら4種類の医療用ロボットをご存知ですか?

2020年、突然の公衆衛生事件により、医療用ロボットに大きな注目が集まりました。医療用ロボットは、...

なぜ私たちは、AI による顔の変形が「偽物」だと今でも思っているのでしょうか?

『スター・ウォーズ』のスピンオフシリーズ『ボバ・フェットの書』には、ファンの間で刺激的な議論を巻き...

...

このレビューでは、5年間にわたる89の研究を数え、ディープラーニングにおけるコードデータ拡張がどのように進んでいるかを示しています。

今日のディープラーニングと大規模モデルの急速な発展により、革新的なテクノロジーの絶え間ない追求がもた...

996の非効率性にノーと言いましょう: ChatGPTはコードコメントとドキュメントを簡単に処理するのに役立ちます

適切なコメントは、Python プロジェクトを成功させる上で非常に重要です。実際には、コメントを書く...