Googleが最新のゼロショット学習画像発話モデルをリリース、ユーザーは複数の種類のタスクを直接使用できるようになる

Googleが最新のゼロショット学習画像発話モデルをリリース、ユーザーは複数の種類のタスクを直接使用できるようになる

[[430758]]

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

Google は、ゼロショット学習タスク転送を簡単に実現できる、新しい弱教師付き画像発話モデルSimVLMをリリースしました。

画像を言葉で説明することから画像に関する質問に答えることまで、モデルは微調整なしですべてを実行できます。

一般的な視覚言語事前トレーニング (VLP) モデルの場合、トレーニング データセットには多数の正確なラベルが含まれている必要があります。モデルのタスク移行では、特定のタスクのデータセットの再ラベル付けが必要です。

要約すると、データセットのラベル付けは時間がかかり、労力がかかるだけでなく、複数のタスクには適用できません。

シンプルで汎用性の高い VLP モデルを開発できるでしょうか?

Google が新たに開発したこのモデルは、モデルのトレーニングに弱教師あり学習を使用しています。モデル化に弱く整合された多数の画像とテキストのペアを利用することで、VLP のトレーニング プロセスが簡素化され、トレーニングの複雑さが大幅に軽減されます。

SimVLM は、接頭辞言語モデリングという単一の目的のためにエンドツーエンドでトレーニングされ、生の画像を直接入力として受け取ります。これらの設定により、モデルは大規模な弱ラベル付きデータセットを活用できるようになり、ゼロショット学習でより優れた一般化効果が得られます。

SimVLM モデルはどのように実装されていますか?

SimVLM モデルの事前トレーニング プロセスでは、プレフィックス言語モデリング (PrefixLM) という単一の目的を採用し、シーケンスのプレフィックスを入力として受け入れ、モデル デコーダーを通じてその継続を予測します。

データセット内の画像とテキストのペアの場合、画像シーケンスはテキスト記述のプレフィックスと見なすことができます。

このアプローチにより、トレーニング プロセスが簡素化され、さまざまなタスク設定に適応する際のモデルの柔軟性と汎用性が最大化されます。

モデルのバックボーン ネットワークは、言語タスクとビジョン タスクの両方で優れたパフォーマンスを発揮する Transformer アーキテクチャを使用します。

入力された生画像データからコンテキスト パッチを抽出するために、ResNet 畳み込みネットワークが使用されます。

上の図に示すように、視覚モダリティでは、画像は複数のパッチに分割され、1 次元のシーケンスに圧縮されます。テキストモーダル文は表現ベクトルにマッピングされます。

このモデルは、約 18 億のノイズを含む画像とテキストのペアの ALIGN トレーニング セットを使用して、ゼロ ショット学習の一般化能力を向上させます。

トレーニング セット内のノイズを補正するために、トレーニング モデルでは合計 800G の Colossal Clean Crawled Corpus (C4) データセットも使用しました。

SimVLM モデルの基本的なパフォーマンスは何ですか?

モデルを事前トレーニングした後、そのパフォーマンスをテストするために、マルチモーダル タスクでモデルを微調整する必要があります。

ここで使用されるマルチモーダル タスクは、VQA、NLVR2、SNLI-VE、COCO Caption、NoCaps、Multi30K En-De です。

SimVLM モデルは、既存の完全機能モデルと比較されます。テスト結果は上記の表に示されています。評価に使用された SimVLM モデルには、8,600 万パラメータ、3 億 700 万パラメータ、6 億 3,200 万パラメータの 3 つの異なるサイズも含まれています。

クロスモーダルタスクのテスト結果では、SimVLM モデルが最も優れたパフォーマンスを発揮しました (データが大きいほど、パフォーマンスが向上します)。CoCo Caption の B@4 指標を除き、他のタスクでも新しい SOTA 結果を達成し、モデルの高度な性質を十分に実証しました。

SimVLMモデルのゼロショット一般化

SimVLM モデルはクロスモーダルタスクテストで優れたパフォーマンスを達成できるため、ゼロサンプルのクロスモーダル転送を正常に実行できるでしょうか?

事前トレーニング済みの SimVLM モデルは、テキスト データのみで微調整されるか、まったく調整されず、画像キャプション、多言語キャプション、オープンエンド VQA、ビジュアル テキスト生成などのタスクでテストされます。

テスト結果は次の図に示されています。

画像とテキストプロンプトが与えられると、事前トレーニング済みのモデルは微調整なしで画像の内容を予測できます。

さらに、微調整されていないモデルは、ドイツ語の字幕生成、データセット外の回答生成、画像コンテンツに基づくテキストの説明、自由形式の視覚的な質問への回答などのアプリケーションで優れたパフォーマンスを発揮します。

SimVLM のゼロショット学習パフォーマンスを定量化するために、事前トレーニング済みの固定モデルを使用して COCO Caption と NoCaps をデコードし、その後、教師あり標準ベースライン (Sup.) と比較します。

結果の比較から、教師ありの微調整がなくても、SimVLM は教師ありトレーニングの品質レベルを達成できることがわかります。

著者について

この研究の第一著者は、現在カーネギーメロン大学に在学中の Google 学生研究者 Wang Zirui 氏です。彼は、ICLR、EMNLP、CVPR などのトップカンファレンスで第一著者として多くの論文を発表しています。

[[430759]]

2020年12月20日時点ではSuperGLUEデータセットで人間のスコアを上回る初のSOTAパフォーマンス(スコア90以上)を達成し、現在はBaiduチームに追い抜かれ2位となっている。

今回開発したSimVLMは、6つの視覚言語ベンチマークにおいてシングルモデルSOTA性能も達成し、テキスト誘導ゼロショット学習の一般化能力も実現しました。

<<:  人工知能を背景とした公共読書空間の探究と創造

>>:  放送・ホスティング業界における人工知能の限界についての簡単な分析

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

sklearn 機械学習の使い方を 5 分で解説します (パート 1)

[[205998]]皆さんのお役に立てれば幸いですので、この投稿を書くのは大変でした。機械学習とデ...

AIGC の 7 つの暗い側面

AIGC アルゴリズムがあらゆるスタイルの素晴らしいアートワークを生成し、素晴らしい文法で長い記事を...

...

距離ベクトルルーティングアルゴリズムの仕組みを説明する

[[122231]]現代のコンピュータ ネットワークでは、ネットワーク トポロジやトラフィックの変化...

XiaoIceが超自然音声技術をリリースし、シリーズA資金調達の完了を発表

7月12日、XiaoIce社は新たな超自然音声技術をリリースした。この技術により、AI 音声の自然さ...

AI企業は米国政府に安全性テストを報告することが義務付けられる

バイデン政権は、すべての主要なAIシステムの開発者にセキュリティテストの結果を政府に開示することを義...

NLP: 車輪の再発明はしない

導入自然言語処理 (NLP) は困難な分野です。構造化されていないテキストから有用な結論を生成するこ...

スタンフォード大学の非接触型デバイスは、アクチュエータをスリーブに「縫い付ける」ことで、タッチ情報を遠隔で送信できる。

世界的なパンデミックは2年近く続いており、リモートワークで何日も過ごし、他の人との物理的な接触を切望...

孫正義:今後30年の人工知能とモノのインターネット

これは非常に興味深いスピーチです。これは、MWC 2017でソフトバンクの孫正義氏が行ったスピーチで...

OpenCV における KMeans アルゴリズムの紹介と応用

私は 51CTO アカデミーの講師、Jia Zhigang です。51CTO アカデミーの「4.20...

...

このモデルは数十万ドルの費用がかかり、数え切れないほどのプロジェクトを導いたのに、使用されたネガティブサンプルがゼロだったことが判明したのですか?

今日の人気のディープラーニング モデルはブラック ボックスであるとよく言われます。つまり、入力を与え...

...

Natureサブジャーナル:ニューロモルフィックコンピューティングがさらに進歩し、科学者はニューロンとシナプスの人工シミュレーションを実現した

ニューロモルフィック コンピューティングは、人間の脳を構成するニューロンとシナプスのメカニズムを模倣...