「非ディープ ネットワーク」12 層が 50 層に勝つ、プリンストン + インテル: 深い方が必ずしも良いわけではない

「非ディープ ネットワーク」12 層が 50 層に勝つ、プリンストン + インテル: 深い方が必ずしも良いわけではない

[[432431]]

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

「ディープ」はディープニューラルネットワーク(DNN)のキーワードです。しかし、ネットワークが深くなるほど、トレーニング中のバックプロパゲーション チェーンが長くなり、推論中の連続計算ステップが増え、レイテンシが高くなります。

深さが十分でない場合、ニューラル ネットワークのパフォーマンスが低下することがよくあります。

こうなると、次のような疑問が生じます。高性能な「非ディープ」ニューラル ネットワークを構築することは可能なのでしょうか?

プリンストン大学インテルの新しい論文は、それが実際に可能であることを証明しています。

彼らは、12 層ネットワークParNetのみを使用して、ImageNet で SOTA に近いパフォーマンスを達成しました。

ParNet は、ImageNet で 80% 以上の精度、CIFAR10 で 96% 以上の精度、CIFAR100 でトップ 1 の精度 81% を達成しています。また、MS-COCO で 48% の AP を達成しています。

ネットワークが非常に「浅い」場合、どのようにそれを実行するのでしょうか?

並列サブネットはパフォーマンスを向上します

ParNet における重要な設計上の選択は、並列サブネットワークの使用です。レイヤーを順番に配置するのではなく、並列サブネットワークに配置します。

ParNet は、異なる解像度で機能を処理する並列サブ構造で構成されています。これらの並列サブ構造をストリームと呼びます。異なるストリームからの機能はネットワークの後の段階で融合され、これらの融合された機能は下流のタスクに使用されます。

ParNet では、著者は VGG スタイルのブロックを使用します。ただし、非ディープ ネットワークの場合、3×3 畳み込みの受容フィールドは比較的制限されます。

この問題に対処するために、著者らは Squeeze-and-Excitation 設計に基づいて Skip-Squeeze-Excitation (SSE) レイヤーを構築しました。 SSE モジュールを使用して変更された Rep-VGG は、Rep VGG-SSE と呼ばれます。

ImageNet などの大規模なデータセットの場合、非深層ネットワークでは非線形性が十分でない場合があり、その表現機能が制限される可能性があります。そのため、著者らはReLUをSiLU活性化関数に置き換えました。

同じサイズの RepVGG-SSE ブロックの入力と出力に加えて、ParNet にはダウンサンプリング ブロックと融合ブロックも含まれています。

モジュールは解像度を下げて幅を広げ、マルチスケール処理を可能にします。一方、融合ブロックは複数の解像度からの情報を組み合わせ、推論中のレイテンシを削減するのに役立ちます。

浅い深度で高いパフォーマンスを実現するために、著者らは幅、解像度、ストリーム数を増やすことで ParNet を拡張しました。

著者らは、ムーアの法則が減速するにつれてプロセッサ周波数の増加の余地が限られるため、並列コンピューティングはニューラルネットワークがより高速な推論を実現するのに役立つだろうと述べている。並列構造の非深層ネットワーク ParNet には、この点で利点があります。

実際のパフォーマンスはどうですか?

ImageNet データセットでは、ParNet は Top-1 と Top-5 の両方で SOTA のパフォーマンスに近い値を示します。

MS-COCO タスクでは、ParNet は最小のレイテンシで最高のパフォーマンスを実現します。

しかし、層数が少ないにもかかわらずネットワーク幅が広くなるため、「非深層ネットワーク」の実際のパフォーマンスに疑問を抱く人もいます。実際、ParNetはより深いResNet50よりもパラメータが多く、あまり説得力がないようです。

しかし、著者は、「非ディープ」ネットワークは複数の GPU によるより高度な並列コンピューティングを活用できるとも述べています。

最後に、ParNet GitHub ページがセットアップされ、コードはまもなくオープンソース化される予定です。

<<:  この履歴書は人気があります:14nmコーヒーを手で挽き、マイクロソフトで性感染症を広め、90%の企業が和解の手を差し伸べる

>>:  メタバースと自動運転車のどちらが先に来るでしょうか?

ブログ    
ブログ    
ブログ    

推薦する

数十人の国内NLP専門家が協力し、事前学習済みモデルの過去、現在、未来を検討した。

[[422361]] BERT や GPT などの大規模な事前トレーニング済みモデル (PTM) ...

音声によるやりとりをより自然にするにはどうすればよいでしょうか?まずはこれら 6 つの重要な知識ポイントをマスターしましょう。

最近、ロボットに関する非常に良い記事をいくつか読んだので、自分の考えを書き留めながら翻訳してみようと...

Microsoft、SAP、Oracle などの世界的なソフトウェア大手は、生成 AI をどのように取り入れているのでしょうか?

2023年は、生成AIテクノロジーが大きな進歩を遂げる年です。ChatGPTなどのAIツールはテク...

Google Gemini の大きな転換? Stanford Meta Chinese は推論性能が GPT-3.5 よりも優れていることを証明

Gemini の推論能力は本当に GPT-4 よりも弱いのでしょうか?以前、Google の大ヒット...

...

ReAct: 言語モデルにおける推論とアクションを組み合わせてよりスマートな AI を実現

本日は、Google Research とプリンストン大学の研究者グループが言語モデルにおける推論と...

クイックソートアルゴリズムの詳細な分析

[[121946]]序文以前、このブログでクイックソートアルゴリズムに関する人気のチュートリアル記事...

寒波警報(黄色)発令中、ドローンの使用にはご注意ください!

11月3日、中央気象台は今年初の黄色寒波警報を発令し、最強の寒波が来ています!警報によると、11月...

3分レビュー! 2021年1月のロボット工学分野の重要な動向の概要

ポスト疫病時代において、国内ロボット市場は急速に発展しました。同時に、国際ロボット分野は前向きな発展...

世界錬金術時代が始まった? MIT、住宅や道路を無制限のバッテリーに変える「カーボンセメント」スーパーキャパシタを開発

おそらく今回、私たちは本当に人類の歴史における特異点に立っているのかもしれない。最近、MIT のカー...

超強力なPytorchオペレーション! ! !

こんにちは、Xiaozhuangです!ここ数日、ディープラーニングに関するコンテンツをいくつか共有し...

BaiduのHou Zhenyu氏:ビッグモデルがクラウドコンピューティングを再形成し、AIネイティブクラウドがクラウドコンピューティングの様相を変える

12月20日、2023年百度クラウドインテリジェンスカンファレンスおよびインテリジェントコンピューテ...

大規模モデルをより強力にするには、検索拡張生成を使用します。ここでは、Python による実装手順を示します。

この記事では、まず RAG の概念と理論に焦点を当てます。次に、オーケストレーション用の LangC...