Uni-TTS音声合成モデルのアップグレード:1つの音声、複数の言語、高忠実度、高効率

Uni-TTS音声合成モデルのアップグレード:1つの音声、複数の言語、高忠実度、高効率

最近、マイクロソフトは最新の Azure ニューラル ネットワーク音声合成技術 Uni-TTSv3 多言語音声合成モデルをリリースしました。以前の世代の音声合成モデルと比較すると、Uni-TTSv3 音声合成は、忠実度が高く、速度が速く、トレーニング時間が短く、コストが低く、効率が高くなります。 Microsoft は、Uni-TTSv3 でアメリカ英語の合成女性音声 Jenny をアップグレードしました。新しくアップグレードされたJenny Multilingual Neuralは、クロスランゲージ機能を備え、14の国と地域の言語をサポートしています。さらに、Uni-TTSv3 に基づいて構築されたディープ ニューラル ネットワーク カスタマイズ音声サービスでは、言語間カスタマイズ サービス機能も拡張されました。お客様は、1 つの言語の録音データをコーパスとして提供するだけで、カスタマイズ モデルが同時に複数の言語を話せるようにトレーニングできます。

ジェニー多言語ニューラルオーディオの例

技術の継続的な進化により、Microsoft のインテリジェント音声パフォーマンスは実際の人間に匹敵するようになり、110 を超える国と地域の言語をサポートし、270 を超えるニューラル ネットワーク音声を提供しています。音声の使用シナリオをさらに拡大し、さまざまな業界の顧客の多様なニーズを満たすために、Microsoft Intelligent Voice は新しいサービスと機能を常に模索しています。

l多言語音声技術要件: 1つの音声だけで、世界中のユーザーを同時にカバーする多言語アプリケーション要件を生成できます。たとえば、仮想ゲームでは、多言語機能を備えたNPC(ノンプレイヤーキャラクター)を作成したり、インテリジェントなカスタマーサービスなどのシナリオで複数の言語を使用してユーザーとコミュニケーションしたりして、ユーザーエクスペリエンスを向上させることができます。

l安定的かつ効率的なプラットフォーム要件:音声モデルをより堅牢(システム安定性)にして、カスタマイズされたサービスシナリオでも外部環境の影響を受けないようにし、さまざまな種類のトレーニングデータを安定的かつ効率的に処理できるようにします。

上記の要求に対処し、以下の機能を改善するために、新世代のニューラル ネットワーク音声合成テクノロジ Uni-TTSv3 が提案されています。

高忠実度

Uni-TTSv3 は、FastSpeech 2 (高速で高品質の音声合成モデル) に基づいて構築された非自己回帰音声合成モデルです。実際の音声を直接トレーニングに使用し、発話速度、イントネーション、ストレス パターンなどの音声変化情報をさらに導入することで、合成音声の品質が向上します。音声の自然さを専門的に評価する、業界で認められたMOS(平均オピニオンスコア)テストの結果によると、さまざまな言語におけるインテリジェント合成女性音声Jenny Multilingual Neuralの平均スコアは4.2ポイント以上(合計5ポイント中)に達し、音声の忠実度が高いことが示されました。

Uni-TTSv3 モデル構造図

多言語サポート

Uni-TTSv3 は、多言語および多話者のデータセットでトレーニングされた強力な多言語音声モデルです。 Uni-TTSv3 は、50 を超えるさまざまな地域やアクセントの話者がさまざまなシナリオで録音した 3,000 時間以上の音声データをトレーニングすることで、多言語ユニバーサル基本音声モデルを構築し、AI 音声が発話速度、イントネーション、ストレス パターンを変更することなく複数の言語を解釈できるようにします。

トレーニング時間の短縮

Uni-TTSv3 は、Azure 音声合成プラットフォームとカスタム ニューラル音声を強化して、多言語音声をサポートします。 Uni-TTSv3 では、カスタム ニューラル音声トレーニング パイプラインをアップグレードし、お客様がより短いトレーニング時間で高品質の音声モデルを作成できるようにサポートします。以前の世代の音声合成モデルと比較すると、Uni-TTSv3 のチューニング プロセスは、特に音響トレーニング部分でシンプルです。トレーニング時間は大幅に約 50% 短縮され、コストがさらに削減され、効率が向上します。

Uni-TTSv3 モデルトレーニング図

Uni-TTSv3 多言語音声合成モデルを今すぐ試してみませんか? Microsoft Azure Audio Content Creation Platform を使用して高品質の合成音声を作成してみませんか?今すぐ試すにはここをクリックしてください!

<<:  「ICV革新的アルゴリズム研究タスク」が正式にリリースされました!登録は11月18日に開始されます

>>:  ペンシルバニア大学は、ディープニューラルネットワークの対称構造を研究し、層ごとの剥離解析モデルを提案した。

ブログ    

推薦する

あらゆる場所でのAI実現へ: 人工知能分野におけるインテルの躍進

[51CTO.comからのオリジナル記事]クラウドコンピューティング、ビッグデータ、5G、モノのイン...

...

もしかしたら「スパイ」していたのかもしれません!大規模モデルのプライバシー推論精度は 95.8% です。

Reddit のユーザーが通勤に関するステータスを投稿しました。通勤途中に、曲がり角を待つ厄介な交...

AIがITリーダーにコストの最適化とリスクの軽減をどのように支援するか

AI は近い将来、IT リーダーにとって最優先事項となる可能性が高いものの、レポートでは、世界中で経...

AIのブラックボックス問題をどう解決するか?ニューラルネットワークモデルアルゴリズムが答えを導きます

AIが特定のタスクを完了することは目新しいことではありません。結局のところ、AIは産業、医療、農業な...

百度地図のデータ収集リンクの80%はAIベースになっており、旅行業界はインテリジェントにアップグレードされている

人工知能時代の地図データ制作はどのような変化を遂げるのでしょうか?7月3日、「Baidu Creat...

...

...

LLaMA2コンテキストを10万に拡張し、MITと香港中文大学はLongLoRAメソッドを開発

一般的に、大規模なモデルを事前トレーニングする場合、テキストの長さは固定されます。より長いテキストを...

...

...

TorchCVは、北京大学の学生が開発したPyTorchベースのCVモデルフレームワークです。

機械学習によってもたらされたあらゆる破壊的技術の中でも、コンピュータービジョンの分野は業界関係者と学...

AIが世界に登場しようとしています。機械は人間の倫理を破壊するのでしょうか?

AIがますます普及するにつれて、倫理的な問題をどのように解決できるでしょうか? AIという言葉は近...

ロボット対コンベア:倉庫物流における戦い

ありがたいことに、倉庫のピッキング作業で荷物を手作業で扱う時代は終わりつつあります。コンベアを使用す...

AIと5Gを組み合わせてIoTの収益を最大化する方法

[[402984]]研究によると、人工知能と 5G テクノロジーを組み合わせることで、通信会社は I...