AI プロジェクトの 85% が失敗します。何が悪かったのでしょうか?

AI プロジェクトの 85% が失敗します。何が悪かったのでしょうか?

[[441161]]

最近のガートナー社の 2 つのレポートによると、AI および機械学習プロジェクトの 85% は成果を上げることができず、プロトタイプから実稼働まで到達するプロジェクトはわずか 53% です。しかし、同レポートでは、AIへの投資が減速する兆候はほとんど見られず、多くの企業が投資を増やす予定であると示唆している。

常識的なビジネス思考があれば、多くの失敗は避けられるでしょう。しかし、投資を促す強力な要因としては、FOMO(取り残される恐怖)、莫大なマーケティング予算を持つ AI 企業間の誇張されたベンチャー キャピタル バブル、そしてある程度、AI 主導の意思決定を活用し、データ主導の企業へと移行するには投資が必要であるという認識などがあります。

AI や機械学習プロジェクトを、たとえばデータベースのアップグレードや新しい CRM システムの導入のような 1 回限りの成果として捉えるのではなく、 AI は、高価な機械への投資が正当かどうかを判断する製造業者のやり方に似た、昔ながらの資本投資として考えた方がよいでしょう。

多くの企業が AI や機械学習を捉えているのとは異なり、メーカーは機械を新しい派手なおもちゃとして捉えることはありません。すべての購入決定では、新製品または改良製品のフットプリント、スペアパーツ、メンテナンス、従業員のトレーニング、製品設計、マーケティングおよび流通チャネルが考慮されます。企業が新しい AI または機械学習システムを導入する場合も、同様の考慮事項が適用されます。

ここでは、企業が AI と機械学習に投資する際によくある 6 つの間違いを紹介します。

本末転倒

どのような質問に答えるのかを知らずに計画を分析すると、失望することになります。特に、気が散る要素が多すぎると、重要な問題から注意が逸れてしまいがちです。自動運転車、顔認識、ドローンなどは、すべて現代の驚異です。人々がこれらの新しい斬新なことに挑戦したいと思うのは当然ですが、より良い意思決定を行えるように AI と機械学習がもたらす中核的なビジネス価値を無視しないでください。

データを活用して意思決定を行うことは新しいことではありません。 R.A. フィッシャーは、おそらく世界初の「データ サイエンティスト」であり、1926 年の論文「フィールド実験の準備」(PDF) の 10 ページの短いエッセイで、データに基づく意思決定の基本を概説しています。オペレーションズ・リサーチ、シックス・シグマ、エドワーズ・デミングなどの統計学者の研究は、統計計算の限界を変数を定量化する手段として利用する手法を参照してデータを分析することの重要性を示しています。

つまり、AI と機械学習は、最初から新しいビジネスチャンスとしてではなく、既存のビジネスプロセスを改善する手段として捉えるべきなのです。まず、プロセス内の意思決定ポイントを分析し、「この意思決定を x パーセント改善できたら、結果にどのような影響があるだろうか」と自問します。

組織の変化を無視する

変更管理の実装の難しさは、AI プロジェクト全体の失敗の大きな原因です。多くの調査により、変革プロジェクトのほとんどが失敗することがわかっています。テクノロジー、モデル、データは、その理由の一部にすぎません。従業員のデータファーストの考え方も同様に重要です。実際、従業員の考え方の変化は、AI 自体よりも重要かもしれません。データ主導の考え方を持つ企業は、スプレッドシートを使用して同様に効果的に業務を行うことができます。

AI イニシアチブを成功させるための第一歩は、データに基づく意思決定が直感や伝統よりも優れているという信頼を築くことです。市民データアナリストの取り組みが失敗に終わるのは、事業部門のマネージャーや上級管理職が独自のやり方に固執したり、データに対する信頼がなかったり、データ分析プロセスに意思決定権を委ねることを拒否したりすることがほとんどです。その結果、ビジネス変革よりも、ごく基本的な分析活動やトップダウンの取り組み、好奇心、再構築のアイデアが多く見られるようになりました。

唯一の救いは、企業の変化とそれに伴う問題が広範囲に研究されてきたことだ。企業変革は経営陣の闘志の試練です。上から命令を出して達成できるものではありません。対象を絞った行動を促すには、人それぞれ反応が異なることを認識し、人々が穏やかに、微妙に、そしてゆっくりと思考や態度を変える必要があります。一般的に言えば、コミュニケーション、模範を示すこと、参加、継続的な改善が重要なポイントであり、これらは意思決定管理プロセスに直接関係しています。

データに基づく意思決定は直感に反することが多いため、AI 分野で企業文化を変えることは困難です。データに基づく意思決定が直感や伝統よりも優れているという信頼を築くには、「生理的安全性」と呼ばれる要素が必要であり、これは最も先進的なリーダーシップ チームだけが習得できるものです。何度も言及される頭字語があります。ITAAP は「It's All About People」を意味します。成功するプロジェクトでは通常、予算の 50% 以上が変更管理に費やされますが、私は 60% 近くになるべきだと主張します。プロジェクト固有の人事分析計画を実行するために、最高人事責任者のオフィスにさらに 10% が与えられるためです。

スティーブ・ヌニェス

元のURL:

https://www.infoworld.com/article/3639028/why-ai-investments-fail-to-deliver.html

<<:  ニューラルネットワークはマルウェアを隠すことができる、と研究で判明

>>:  より良い機械学習にはより良いデータ注釈が必要

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

エッジコンピューティング、人工知能、サーマルイメージング - スマートセキュリティの未来

スマート セキュリティ業界は急速に進化しており、AI と 4K がスマート カメラで普及するにつれて...

GoogleはコードネームGenesisと呼ばれるAIニュースライティング製品をテストしていると報じられている。

ニューヨーク・タイムズ紙は7月20日、3つの情報源を引用して、グーグルがAI技術を使ってニュース記事...

顔認識はあなたの家の玄関からどれくらい離れていますか?

最近、Google Chinaは新たなPR活動を開始した。そのひとつは、Zhihuで「AIが私たちの...

アフリカはパンデミックの最中に包括的な接続性を構築しており、明確な投資方針を持っている

テクノロジーと通信の急速な進歩により、自動化革命の時代において、アフリカの大規模かつ急成長中の人口は...

宇宙の果ては「計算」だ! AI界の大物ウルフラム氏の最新スピーチ:LLMはコンピューティング空間を自律的に探索、シンギュラリティは今や到来

人工知能、宇宙、そしてあらゆるものを計算的に考えるにはどうすればよいでしょうか?最近、有名なイギリス...

...

...

予測 AI は顧客とのつながりをどのように変えるのでしょうか?

[[422098]]予測分析は、私たちが必ずしも気づいていないとしても、私たちの生活の多くの分野に...

独占インタビュー | 独立系開発者 Li Xiaoyu: AI ツールを使用して作業効率を向上

パートナーシップ、会社登録、資金調達なしで、独立系開発者の Li Xiaoyu は継続的に実践と反復...

マグロのように尾の弾力性を動的に調整する「ロボットマグロ」がサイエンス誌に掲載

バージニア大学のダン・クイン教授と博士研究員のゾン・チアン氏は、生体力学、流体力学、ロボット工学を組...

HumanGaussian オープンソース: ガウススプラッティングに基づく高品質な 3D 人体生成のための新しいフレームワーク

3D 生成の分野では、テキスト プロンプトに基づいて高品質の 3D 人間の外観と形状を作成することは...

...

Apache Flink トークシリーズ - PyFlink のコアテクノロジーを公開

皆さんこんにちは。本日のサミットで Apache PyFlink のコア技術を皆さんと共有できること...

AIIA2020人工知能開発者会議が成功裏に開催され、オープンソースを採用してAIの新たな勢いが生まれました。

【51CTO.comオリジナル記事】 9月28日、「オープンソース開発とオープン性」をテーマにした...