生活における人工知能の主な応用

生活における人工知能の主な応用

人工知能は2度のブームを経験し、現在は3度目のブームを迎えています。主な理由は、第一にディープラーニング技術に代表される技術の急速な発展、特に画像処理分野における大きな進歩、第二に強力なコンピューティングパワー、そして第三にデータ量の増加です。データ コンピューティング機能とアルゴリズムがあるからこそ、より多くの分野でより多くのビジネス上の問題を解決できるのです。今日のビジュアル インテリジェンスの実践における探求は、次の 4 つの側面に反映されています。

1. 電子商取引検索

現在、eコマース検索は比較的成熟した製品であり、大規模に導入され始めています。目標は、eコマース検索において、テキストのほかに、動画広告や視覚的な診断の探索など、別のタイプの検索を提供することです。ディープラーニングの急速な発展により、電子商取引環境における画像検索は大きな進歩を遂げ、ほぼ「見たままの情報」を実現し、関連情報をオンラインで検索できるようになりました。

2. 都市の目

City Eye の目標は、市内の多数のカメラを分析して、交通と安全に関するよりインテリジェントな判断を下すことです。計算の観点から見ると、都市全体の何万台ものカメラを分析するには膨大な計算能力が必要です。しかし、今日のクラウドと大規模コンピューティング プラットフォームのサポートにより、ビデオ データを構造化することで、ネットワーク全体にわたるビデオ データの大規模な検索が可能になります。例えば、車両の属性やナンバープレートに基づいて映像データを検索することで、逃走車両を追跡することができます。

3. 動画広告

探索の最初の側面は、すべての視聴者の視聴体験に影響を与えることなく、広告をシームレスに埋め込むためにビデオ内の適切な位置を見つけることです。

2 つ目の側面は、ビデオ コンテンツを分析し、シナリオに適した適切な広告を埋め込むことです。

3 つ目の側面は、機械学習を使用して広告ポスターの生成をより便利にするインテリジェントな広告デザインです。ユーザーは、直線と四角形を描くだけで、手動で作成したものとほぼ同等の品質の広告ポスターを生成できます。

4. 視覚診断

視覚診断は、機械の診断と生物の診断の2つの部分から構成されます。

従来の産業診断方法は、人がツールを持って現場検査を行うというものでした。診断機の目的は、視覚的な分析によって機械の手動検査を置き換えることです。現場でビデオを撮影し、視覚的に分析することで、機械の故障を自動的に診断できます。診断生物学は、医療画像のインテリジェントな診断です。


<<:  この新しい AI エレクトロニクスにはシリコンが使われていません。脳のニューロンをシミュレートすることができ、サイエンス誌にも掲載された。

>>:  クラウド AI とエッジ AI: 2022 年にはどちらがより良い選択でしょうか?

ブログ    
ブログ    

推薦する

...

米国の刑務所、受刑者の通話を分析するために人工知能を導入する計画

下院の主要委員会が、受刑者の通話を分析するための人工知能の使用に関する報告書の提出を求めたことにより...

...

日常生活におけるAIの応用

機械学習やその他の技術をバックグラウンドで使用することで、AI は私たちの日常生活に多くの素晴らしい...

...

MiniGPT-4: 高度な大規模言語モデルを使用した AI 視覚言語理解の向上

1. プロジェクトの背景と動機今年初め、OPEN AI の GPT-4 は前例のないマルチモーダル機...

Go-OpenAI を使用して ChatGPT を簡単に呼び出し、無限の創造性を解き放ちましょう。

今日は、go-openai を使用して chatGPT を呼び出すという興味深いトピックを皆さんと共...

無料の Python 機械学習コース 1: 線形回帰アルゴリズム

最も基本的な機械学習アルゴリズムは、単一の変数を持つ線形回帰アルゴリズムです。現在、非常に多くの高度...

...

データサイエンティストが最もよく使用するアルゴリズム10選

最新の KDnuggets 調査では、データ サイエンティストの実際の業務で最もよく使用されるアルゴ...

OpenAIのCLIPは「平易な言葉」を使った正確な画像検索で皆を驚かせた

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

人工知能がエンタープライズ ソフトウェアを変える 10 の方法

人工知能の応用は、予想外の場所に現れるかもしれません。人工知能ソフトウェアの市場にいる場合、自社製品...

2018 年の 15 大テクノロジー トレンド、テクノロジーに関して正しい方向に進んでいますか?

[[216696]]一般的に言えば、未来そのものを予測することは難しいため、技術動向を明確に予測す...

電子商取引用に作成されたナレッジグラフは、ユーザーのニーズをどのように感知するのでしょうか?

[[243140]] 1. 背景2017年6月に電子商取引認知マップが発表されて以来、実践から体系...

...