クラウド AI とエッジ AI: 2022 年にはどちらがより良い選択でしょうか?

クラウド AI とエッジ AI: 2022 年にはどちらがより良い選択でしょうか?

エッジ AI とクラウド AI は、現在企業が使用している最も重要なテクノロジーの一部であることがわかりました。

過去数年間、世界中のインターネットは、ユーザーのニーズの高まりに応じて大きな変化を遂げてきました。わずか 10 年前、多くの企業はオンプレミスのデータ センター インフラストラクチャを運用および保守し、ビジネス運営を円滑に進めるために多額の資金を投資する必要がありました。クラウド コンピューティングの登場により、これらすべてが変わりました。現代のビジネスの世界では、クラウド サービスにより、ビジネス部門の業務がよりシンプルかつ効率的になります。あらゆる規模の企業がアプリケーションをクラウドに移行し続けるにつれて、クラウド コンピューティング テクノロジの重要性が徐々に認識されつつあります。さらに、業界の専門家は、AI 統合コンピューティング技術が IT 業界の枠を超えると考えています。エッジ AI とクラウド AI の出現は、企業が機密データやアプリケーションを扱う現状に大きな影響を与えています。

COVID-19パンデミックの発生後、多数の従業員が自宅からのリモートワークを余儀なくされ、職場環境のエコシステム全体が混乱しました。この現象は、既存の労働条件に対処し、ビジネスを円滑に運営するために、破壊的技術の導入を促進するものです。この変化する仕事モデルは非常に困難ですが、ディープラーニングや人工知能などの技術の発展は、製造、ヘルスケア、IT などの業界に利益をもたらしています。

エッジコンピューティングAIの人気の高まり

エッジ コンピューティング AI は、機械学習アルゴリズムをハードウェア上でローカルに処理および実装するという問題を解決します。この形式のローカル コンピューティングでは、すべてがデバイス上で行われるため、データ転送や共有のネットワーク遅延を最小限に抑えるか、または排除し、セキュリティ上の課題に対処できます。しかし、このローカル処理は、機械学習アルゴリズムのトレーニングをローカルで実行する必要があることを意味するものではありません。通常、トレーニングは、より大きなデータセットを処理できるように計算能力が向上したプラットフォームで実行されます。このシステムは、リアルタイム データ処理アプリケーション向けの AI アクセラレーション機能と展開モデルを組み合わせています。

エッジ AI テクノロジーは、GPU、NPU、TPU、その他の AI アクセラレータの需要の増加により、近年大きな変化を遂げています。さらに、機械学習と AI の使用が増えると、さまざまなタスクをローカルで処理するためのエッジ AI アプリケーションとプラットフォームの採用も増えるでしょう。

クラウドコンピューティングAIの利点

一部の専門家は、AI をクラウドとエッジに統合することは企業戦略の補完的な部分であると考えていますが、クラウドに AI を導入すると、ビジネス運営が安全になるだけでなく、企業が策定する財務戦略も変わるという点では誰もが同意しています。

クラウド コンピューティング インフラストラクチャ上で実行される AI は、多くのプロジェクトとワークロードを同時にサポートできます。共有インフラストラクチャは、AI ハードウェアとオープンソース ソフトウェアを組み合わせて、ハイブリッド クラウド サービスを通じて AI 機能を提供することに重点を置いています。 AI とクラウド コンピューティングの力を活用することで、企業はアジャイル開発に取り組むことができます。急速に変化する今日のテクノロジーの世界では、企業は顧客との関係を維持するために常に先手を打つよう奮闘しています。さらに、クラウド AI を導入することは、企業が開発サイクルを加速し、エラーを最小限に抑えながらより効率的にソリューションを提供するための優れた方法となります。

バランスをとる: ハイブリッドクラウドインフラストラクチャの実装

クラウド コンピューティング AI は、クラウド内でリモートにコンピューティング能力を提供することで、ハードウェア処理をサポートします。この処理はリモートで実行されるため、システムはパフォーマンスと処理の面でより強力になります。さらに、AI クラウド コンピューティングにより、アーキテクチャと設計のオプションが増えます。エッジ AI はクラウド AI とは大きく異なり、クラウド コンピューティングと AI と組み合わせて使用​​すると非常に価値のある追加機能をいくつか提供します。

多くの企業にとって、クラウドとエッジ コンピューティングの融合は必須です。ハイブリッド クラウド アーキテクチャにより、企業はオンプレミス システムのセキュリティと管理性を活用しながら、サービス プロバイダーのパブリック クラウド リソースを活用できます。しかし、このテクノロジーを導入することは、企業によって意味が異なります。これは、クラウドでトレーニングしてエッジに展開したり、データセンターでトレーニングしてエッジでクラウド コンピューティング管理ツールを使用することを意味する場合があります。企業がクラウドとエッジ コンピューティングを同じプラットフォーム上で組み合わせると、より多くの機会が生まれます。

<<:  生活における人工知能の主な応用

>>:  機械学習の変革: 多分野にわたる問題に立ち向かい、新しい機械学習エコシステムを構築する

ブログ    
ブログ    
ブログ    

推薦する

ビッグデータと人工知能の関係

[[342758]]人工知能教育は最も美しい新しいインフラです人工知能のアルゴリズムの中にはデータ...

...

空飛ぶ車の将来展望は?

空飛ぶ車というアイデアは何十年も私たちの想像力をかき立て、交通渋滞の上を飛ぶことができる未来のビジョ...

...

2023 年の 5 つの驚くべき自動化の進歩

自動化は、業界やプロセスの変革の原動力となり、効率性、コスト効率、エラーの低減を実現しています。 2...

大規模なモデル開発スタックが準備完了です。

著者 | リチャード・マクマナス企画 | ヤン・ジェンWeb3 は Web2 を打倒することはできま...

デジタル変革、人工知能、そして生産性の問題

企業がデジタル変革を進める際に、生成 AI がいかにして企業の生産性を向上させることができるかについ...

マスク氏の年収:0!米国のCEO給与ランキングが発表:黄氏はスーザン・カルキン氏より600万ドル近く低い

すべてはウォール・ストリート・ジャーナルが最近発表した米国上場企業のCEOの給与ランキングから始まっ...

ペイ・ジアンのチームの44ページの新作:ディープラーニングモデルの複雑さを理解するには、これを読んでください

[[388699]]モデルの複雑さは、機械学習、データマイニング、ディープラーニングにおいて常に重要...

人工知能によりデータセンターのコストと制御ニーズが増加

人工知能 (AI) はコンピューティングとデータ分析の世界を変えています。機械学習、自然言語処理、コ...

米国の委員会は「道徳的義務」を理由にAI兵器の開発を禁止すべきではないと勧告した。

[[378901]]米政府の委員会は報告書草案の中で、米国は人工知能(AI)を搭載した自律型兵器の...

外国人の機械学習エンジニアは失業に直面しているのに、なぜ彼らはまだMLの学習にこだわるのでしょうか?

機械学習の分野では悲観的な見通しが広がっています。機械学習の人材の採用は減速しています。 [[334...

平均年収35万元、2018年のビッグデータAIの発展動向分析

近年、ビッグデータは非常に人気があり、特に2017年には、ビッグデータ産業の発展が政府活動報告に記載...

...