コードを知らなくても機械学習を実現できますか?

コードを知らなくても機械学習を実現できますか?

ローコード プラットフォームは、アプリケーション、統合、およびデータの視覚化の開発の速度と品質を向上させます。ローコード プラットフォームでは、コードを使用してフォームやワークフローを構築する代わりに、ドラッグ アンド ドロップ インターフェイスを活用して、Web アプリやモバイル アプリで使用する画面、ワークフロー、データ視覚化を設計します。ローコード統合ツールは、データ統合、データ準備、API オーケストレーション、一般的な SaaS プラットフォームへの接続をサポートします。ダッシュボードやレポートを設計し、データ ソースに接続してデータの視覚化を作成する場合は、選択できるローコード オプションが多数あります。

コードで実行できる場合は、開発プロセスを高速化し、継続的なメンテナンスを簡素化できるローコードまたはノーコードテクノロジーが存在する可能性があります。もちろん、これらのプラットフォームが機能要件、コスト、コンプライアンス、その他の要素を満たしているかどうかを評価する必要がありますが、ローコード プラットフォームが提供するオプションは、一般的に、自分で構築できるものと、サービスとしてのソフトウェア (SaaS) として購入できるものの間のグレーゾーンに該当します。

しかし、ローコード オプションは、アプリケーション、統合、視覚化の開発をより良く、より速くするためだけのものなのでしょうか? より高度な機能や新しい機能を使用して加速および簡素化するローコード プラットフォームについてはどうでしょうか?

私は、テクノロジー チームが機械学習機能をテストおよび実験できるようにするローコードおよびノー​​コード プラットフォームを検索し、プロトタイプを作成しました。私は主にローコード アプリケーション開発プラットフォームに焦点を当て、エンドユーザー エクスペリエンスを向上させる機械学習機能を探しています。

私がその過程で学んだことのいくつかをここに挙げます。

開発者ごとに異なるプラットフォーム

Python でコーディングするよりも速く簡単に、新しい機械学習アルゴリズムを試したり ModelOps をサポートしたりできるローコード機能を探しているデータ サイエンティストですか? あるいは、データ操作に重点を置き、新しいデータ ソースを発見して検証しながらデータを機械学習モデルに接続したいと考えているデータ エンジニアかもしれません。

Alteryx、Dataiku、DataRobot、H20.ai、KNIME、RapidMiner、SageMaker、SAS などのデータ サイエンスおよびモデル操作プラットフォームは、データ サイエンティストやその他のデータ専門家の作業を簡素化および加速するように設計されています。包括的な機械学習機能を備えていますが、データサイエンスやデータエンジニアリングのスキルを持つ専門家にとっては操作が簡単です。

KNIME の主任データ サイエンティスト兼エバンジェリズム責任者である Rosaria Silipo 博士が、ローコード マシン ラーニングと AI プラットフォームについて語った内容は次のとおりです。 「AI ローコード プラットフォームは、従来のスクリプトベースの AI プラットフォームの効果的な代替手段として機能します。コーディングの障壁を取り除くことで、ローコード ソリューションはツールに必要な学習時間を短縮し、新しいアイデア、パラダイム、戦略、最適化、データの実験に多くの時間を費やすことができます。」

特に、アプリケーションや統合で機械学習機能を活用したいと考えているソフトウェア開発者には、さまざまなプラットフォームから選択できます。

  • GCP AutoML や Azure Machine Learning Designer などのパブリック クラウド ツールは、開発者が機械学習機能を獲得するのに役立ちます。
  • Google の AppSheet、Microsoft の Power Automate の AI Builder、OutSystems ML Builder などのローコード開発プラットフォームはすべて、機械学習機能を実証しています。
  • PyCaret などのローコード学習ライブラリは、データ サイエンティスト、シチズン データ サイエンティスト、開発者を対象としており、オープン ソース ツールキットでの機械学習の学習と実装を加速するのに役立ちます。

これらのローコード サンプルは、コーディング スキルを持つ開発者やデータ サイエンティストを対象としており、さまざまな機械学習アルゴリズムの実験を加速するのに役立ちます。 MLops プラットフォームは、開発者、データ サイエンティスト、運用エンジニアを対象としています。機械学習の DevOps として、MLops プラットフォームは、機械学習モデルのインフラストラクチャ、展開、運用の管理を簡素化するように設計されています。

市民アナリストのためのコード不要の機械学習

ビジネスアナリストを対象とした、コード不要の機械学習プラットフォームが登場しており、クラウド データ ソースへのアップロードや接続、機械学習アルゴリズムの実験が簡単に行えるようになっています。

私は Noogata の共同創設者兼 CEO である Assaf Egozi 氏に、ビジネス アナリスト向けのノーコード 機械学習プラットフォームが、経験豊富なデータ サイエンス チームを擁する大企業にとってもゲーム チェンジャーとなる理由について話を聞きました。彼は私にこう言いました。「企業内のデータ コンシューマーのほとんどは、アルゴリズムをゼロから開発したり、AutoML ツールを効果的に適用したりするために必要なスキルを持っていません。そのため、彼らにそうすることを期待すべきではありません。代わりに、これらのデータ コンシューマーや市民データ アナリストに、高度な分析をビジネス プロセスに簡単に統合する方法を提供する必要があります。」

Monitaur の CTO 兼共同創設者である Andrew Clark 氏も同意します。 「企業にとって機械学習をより身近なものにするのは素晴らしいことです。ビジネスニーズを満たすモデルを製品化する専門知識を持つ、訓練を受けたデータサイエンティストやエンジニアはそれほど多くありません。ローコードプラットフォームは橋渡しをしてくれます。」

ローコードは機械学習の実験を民主化し、加速させますが、厳格な実践、データ ガバナンス ポリシーの遵守、バイアス レビューが依然として必要です。クラーク氏はさらに次のように付け加えています。「企業はローコードを AI/ML のメリットを享受するためのツールとして捉える必要があります。ビジネスの可視性、制御、モデル管理はすべて、ビジネスに関する信頼できる意思決定を行うために必要であるため、企業は手抜きをすべきではありません。」

<<:  人工知能 (AI): 2022 年に注目すべき 7 つのトレンド

>>:  2021年の中国サービスロボット産業の発展状況のレビュー

推薦する

人工知能技術の発展の概要

[[352219]]人工知能は、コンピュータサイエンス業界のトップテクノロジーの一つとして、1956...

AIコンピューティングのローカライズのもう一つの可能​​性:CoCoPIEの探究と選択

[51CTO.comからのオリジナル記事]これは、少し前に設立され、シリーズAの資金調達を完了したば...

Meta、Google、Tesla、競合他社が団結してOpenAIについて不満を訴える!ソラは物理世界を理解していません。GPT3 だけです。

編集者 | ヤン・ジェン制作:51CTO テクノロジースタック(WeChat ID:blog)先週、...

データ汚染を防ぐのは困難です。機械学習モデルに「悪いことを学習」させないでください

過去 10 年間、クラウド コンピューティングの普及により、多くの企業に高性能コンピューティングおよ...

...

...

最も強力な AI 搭載スマートフォンに関する神の視点: iPhone X

世界中で人気のiPhone Xがついに登場。バージョン番号を埋めるためだけに名付けられたiPhone...

...

...

AIが疫病と戦う:百度がマスク顔検出・分類モデルをオープンソース化

仕事に戻るにあたり、各地域はどのように流行を予防すべきでしょうか?人工知能技術は、新型コロナウイルス...

DeepMindが乳がん診断AIをリリース:市場に投入するにはまだ多くの課題がある

GoogleのDeepMindチームは最近、「乳がんスクリーニングAIシステムの国際評価」と題した論...

4Kウィンドウの長さで長いテキストを読むことができ、陳丹奇の弟子がMetaと提携して、大規模なモデルでメモリを強化する新しい方法を立ち上げました

ウィンドウの長さが 4k でも、大きなモデルで大きなテキストを読み取ることができます。プリンストン大...

9つの主要な回帰アルゴリズムと例のまとめ

線形回帰は、多くの場合、機械学習やデータサイエンスで最初に学ぶアルゴリズムです。シンプルでわかりやす...

...

DAMOアカデミー物流ロボットQA

1. 物流ロボットとは?物流ロボット「Xiaomanlu」は、ターミナル物流シナリオ向けに設計され...