Nature サブジャーナル: 機械学習を使用してヒトの遺伝子制御の背後にある「文法」を明らかにする

Nature サブジャーナル: 機械学習を使用してヒトの遺伝子制御の背後にある「文法」を明らかにする

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

AIはまた素晴らしいことを成し遂げました。

今回、フィンランドのヘルシンキ大学の最新の研究では、機械学習を利用して、人間の遺伝子制御の背後にある「文法」を解明しました。

これまで科学者たちは、DNA が遺伝子がいつどこで発現するかを決定することができるということしか知りませんでした。しかし今や、科学者たちはついにその背後にある論理を深く理解するようになりました。

この成果は、がんや遺伝性疾患の研究に新たなインスピレーションをもたらすものであり、Nature の関連誌 (Nature Genetics) に掲載されました。

遺伝子制御の背後にある文法を解明する

始める前に、背景情報をいくつか確認しましょう。

遺伝子調節は細胞内の遺伝子活動を制御する重要なプロセスです。不適切な調節は癌などの病気を引き起こす可能性があります。

ヒトゲノムの DNA には、タンパク質をコードする遺伝子、筋肉細胞に強度を与える配列、脳細胞に情報処理能力を与える配列などが含まれています。

DNA には、筋肉遺伝子は筋肉でのみ発現し、脳遺伝子は脳でのみ発現するようにするなど、遺伝子が発現する時期と場所を決定する遺伝子を制御する要素も含まれています。

遺伝子制御を決定するコーディングロジックについては、以下の理由により、まだほとんどわかっていません。

ヒトゲノムには約 30 億の塩基対が含まれていますが、ゲノム配列は短すぎるため、その背後にあるロジックを理解するのには使用できません。

現在、フィンランド科学アカデミーの癌遺伝学先端研究センターの科学者たちは、天然のゲノム配列を使用する代わりに、ランダムに合成されたDNA配列をヒト細胞に導入するという革新的なアプローチを採用している。

細胞は新しい DNA を読み取り、アクティブな調節要素である配列を強調表示します。

これらのシーケンスが研究対象となります。

著者らによると、その合計空間は全ヒトゲノムの100倍の大きさだという。

十分なサイズのデータ​​セットがあれば、機械学習を使用してデータ分析を行うことができます。

どのような発見がありましたか?

遺伝子発現は DNA に結合する転写因子(タンパク質のクラスの総称)によって制御されることがわかっています。

この機械学習モデルは、個々の転写因子が弱い文法で「加算的」に遺伝子制御に関与していることを示しています。

2 つの主要な調節要素であるエンハンサー (転写を増加させる) とプロモーター (転写の開始を定義する) のうち、エンハンサーは転写因子間の相互作用を伴わないメカニズムによってプロモーターからの発現を増加させます。

研究者らはその後、大腸がん細胞、肝臓がん細胞、網膜の正常細胞という3種類のヒト細胞を比較した。

研究者たちは、細胞内で非常に活発に活動している転写因子はごくわずかであるが、その活性は細胞の種類に関係なくどこでも同様であることを発見した。

この結果は、ヒト細胞内の遺伝子制御要素がクロマチン環境(コンテキスト)に基づいて 2 つのタイプに分類できることを示しています。

DNA が密集している閉じたクロマチン領域、または DNA がヒストンにしっかりと囲まれていないより開いたクロマチン環境のいずれかです。

クロマチンと染色体は、同じ物質の 2 つの形態です。クロマチンは伸長した状態にあります。 DNA情報の表現に役立ちます。

従来の見解では、活性調節要素は、転写因子が DNA に容易にアクセスできるオープンクロマチン領域にのみ存在します。

したがって、閉じたクロマチン領域内で機能する活性調節要素の発見は、この研究の核となる新たな観察結果の 1 つです。

さらに、研究者らはクロマチンに依存する調節要素を発見した。

これらの要素はゲノム内の通常の位置では活性ですが、元の位置から除去され、別の遺伝子の近くに移動されると、その活性は大幅に低下します。

論文アドレス: https://www.nature.com/articles/s41588-021-01009-4

<<:  AIキーボード戦士が登場: DeepMindがエージェントのトレーニングを開始、コンピューターを人間のように「操作」

>>:  3枚の写真からフィギュアの3Dモデルを生成!南カリフォルニア大学の中国人博士が、より現実的な新しいモデル「NeROIC」を提案しました。

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

シティグループは5年以内に1万人の雇用を人工知能で置き換える計画

フィナンシャル・タイムズによると、シティグループは5年以内に投資銀行部門の技術・ビジネススタッフの5...

AI プログラミング: GitHub Copilot と Amazon CodeWhisperer の詳細な比較

1. はじめにGitHub Copilot と Amazon CodeWhisperer は、コーデ...

機械学習エンジニアになる方法

[[376371]] [51CTO.com クイック翻訳] 人工知能や機械学習の技術を導入する企業が...

Nature: 室温超伝導体はなぜ持続できないのか?

世界中で白熱した議論を巻き起こしたLK-99論争が終結した後、ネイチャー誌の見出しに再び「室温超伝導...

...

...

「突破」に注目! 2021年6月のドローン業界の重要な動向の概要

ドローンは無人航空機であり、センサー、インテリジェント制御、情報処理、電力システムなどの技術を統合し...

...

リアルスティールの実写版!山東省の3人組のチームが、最小遅延12ミリ秒の史上最速ボクシングロボットを開発した。

この男性が自分の動きでロボットを操作している様子を注意深く見てください。彼がパンチを繰り出すと、ロボ...

ロボットR2-D2は50年後に人間の仕事を完全に置き換えるでしょうか?

[51CTO.com クイック翻訳] 海外メディアの報道によると、誰かが設計しているロボットがあな...

ジェネレーティブ AI によるヘルスケアの変革: 新たなユースケースと将来の可能性

ヘルスケアとウェルネスのダイナミックな分野では、ANI と生成 AI の組み合わせによる革命が進行し...

OpenAI が GPT-4 やその他のモデルを更新し、新しい API 関数呼び出しを追加し、価格を最大 75% 引き下げ

数日前、OpenAIのCEOサム・アルトマン氏は世界ツアーのスピーチで、OpenAIの最近の開発ルー...

...

LLM幻覚問題の徹底レビュー! HITチームの50ページのレビューが公開された

幻覚だよ、古い友人よ。 LLM が私たちの視野に入って以来、錯覚の問題は常に無数の開発者を悩ませてき...