エッジでの機械学習を活用して生産ラインの品質を向上させる方法

エッジでの機械学習を活用して生産ラインの品質を向上させる方法

機械学習アルゴリズムは、予知保全、製品品質管理の改善、機械異常検出、生産ライン監視、サプライチェーン管理など、さまざまな製造アプリケーションにおいて OEM 向けのインテリジェントな意思決定支援システムとして機能します。

スマート工場や倉庫では、接続されたデバイスと分散インフラストラクチャを通じて、大量のデータを継続的に収集し、共有します。複雑な機械学習アルゴリズムを使用して大量のデータを分析するには、膨大な計算能力が必要です。既存のオンプレミスおよび集中型クラウド インフラストラクチャは機能しますが、遅延、膨大な帯域幅の消費、セキュリティ関連の問題などの点で独自の制限があります。一部のスマート産業用アプリケーションでは、リアルタイムでデータにアクセスするために低遅延が必要です。レイテンシと帯域幅の使用量を削減するには、エッジでの機械学習が解決策となります。

スマートファクトリーのエッジにおける機械学習

エッジ機械学習は、機械学習またはディープラーニングアルゴリズムを使用して、デバイスレベルまたはネットワークの「エッジ」にあるローカルインフラストラクチャでデータ処理を実行し、クラウドネットワークへの依存を軽減するテクノロジーです。エッジ コンピューティングにより、計算集約型の機械学習アルゴリズムをエッジで実行できるようになります。これにより、よりリアルタイムな分析を生成できるようになり、さまざまな業界でさまざまな種類のアプリケーションが可能になります。

ほとんどの場合、機械学習モデルは Tensorflow、Keras、Caffe などのフレームワークでプログラムされます。これらのフレームワークを使用すると、プログラミング モデルは、コンピュータ システム (PC またはラップトップ) などのハイエンド プラットフォームや、Microsoft Azure、Google Cloud、Amazon AWS などのクラウド プラットフォームでトレーニングされます。モデルのトレーニングが完了すると、モデルはクラウド プラットフォームに保存され、デプロイされるか、または NXP IMX8M ベースのデバイスなど、リアルタイム推論 (予測) に適した組み込みプラットフォームにデプロイされます。

人工知能や機械学習、特にエッジ機械学習は、インダストリー4.0の発展を促進する重要な技術となっています。スマートファクトリーでは、製品品質の向上が非常に重要な役割を果たします。

さまざまな製造業務における機械学習モデルの応用

表面検査:電子機器製造の場合、表面検査には、はんだ接合部検査、完全性検査、コネクタピン検査、外観シェル検査などが含まれます。

テクスチャ検査:さまざまな種類のオブジェクトの間で、その品質は表面のテクスチャに反映されます。したがって、視覚ベースのテクスチャ検出は、オブジェクトの品質を決定する上で重要な役割を果たします。合板製造では、木材が原材料となります。木材に節があると、木材が弱くなり、破損の可能性が高まります。この弱点は、その大きさ、場所、量、状態によって異なります。ディープラーニングベースの視覚モデルを使用すると、木材の節の存在を検出し、数え、そのサイズを測定することができます。

欠陥検出:ビジョンベースのアルゴリズムを使用して製品の欠陥を検出できる例は数多くあります。たとえば、医薬品製造では、ビジョンベースのモデルは、色の偏差、カプセルのへこみや穴、不規則な形状や破損した端、錠剤のひび割れなどの欠陥を検出するのに役立ちます。生産中の外国ラインを識別できます。

半導体技術の進歩により、これらの計算集約型アルゴリズムをエッジ プラットフォームに導入できるようになりました。さまざまな SoC にグラフィックス処理ユニット、デジタル信号処理ユニット、ニューラル処理ユニットを統合することで、低電力、低コストのプラットフォームでリアルタイムのパフォーマンスを実現できます。

スマートファクトリーはどのようにして製品の品質を保証するのでしょうか?

スマート ファクトリーで生産される製品の品質を維持する上で非常に重要な役割を果たす主な要因は次のとおりです。

機械の一貫した操作

製造された製品の品質を一定に保つには、すべての機械が最高の効率と最小限のダウンタイムで最適な状態で稼働することが重要です。機械学習ベースの予知保全では、異常検出などのさまざまな技術を使用して、機械の故障を早期に特定し、タイムリーなメンテナンスを実行します。振動、騒音、温度、消費電力などのさまざまな物理パラメータを監視し、異常な動作に基づいてメンテナンスを予測します。

製造業者にとって、予知保全は画期的なものです。スマート製造のためのデータ主導の意思決定に役立ちます。低コスト、低消費電力の MCU を幅広く取り揃えているため、非常にコスト効率の高い方法で工場に導入できます。センサーはさまざまな物理的特性に関する大量のデータを生成するため、機械学習のユースケースのためにこの生データをすべてクラウドに送信するのは現実的ではありません。エッジデバイスの処理能力を活用することが重要です。

プロセス品質管理

従来の製造プロセスでは、目視検査や品質管理に関連する作業は手作業で実行されます。製品品質の手動検査は正確でない可能性があります。その結果、製品に欠陥が生じ、コンプライアンスが遵守されず、収益が失われます。この問題を克服するために、スマート ファクトリーではビジョンベースのディープラーニング モデルが使用されます。

ビジョンベースのディープラーニングモデルは次のように分類されます。

画像分類:画像内の木材、医薬品、果物/野菜などのオブジェクトの存在を識別します。

オブジェクトの位置特定:オブジェクトを認識する際に、画像内のオブジェクトの正確な位置を特定するために境界ボックスが決定されます。

セマンティックセグメンテーション:これは、画像の各ピクセルを特定のクラスラベルにリンクすることを指します。

インスタンス セグメンテーション:セマンティック セグメンテーションと非常に似ていますが、同じクラスの複数のオブジェクトを扱います。

機械学習モデルは、画像分類を使用して組立ラインの機械の摩耗を監視し、仕掛品や完成品の品質チェックを実行することで、製造業を変革する準備ができています。


<<:  クリアビューAI、民間企業への顔認識技術の販売を永久に禁止することに同意

>>:  MITの人工知能研究室で1年間働いて学んだ5つのこと

ブログ    
ブログ    

推薦する

PythonでChatGPT APIを使用してリアルタイムデータを処理する方法

翻訳者 |李睿レビュー | Chonglou OpenAI が立ち上げた GPT は現在、世界で最も...

AIチップ分野におけるNvidiaの優位性により、スタートアップ企業の資金調達は困難になっており、資金調達取引件数は80%減少した。

9月12日、複数の投資家は、NVIDIAがすでに人工知能(AI)チップ製造の分野で優位に立っており...

これはボストンダイナミクスのロボットエンジニアの一日です

[[401177]]ボストン・ダイナミクスは誰もが知っていますが、同社の従業員の仕事や生活について知...

テクノロジー|軽量顔検出アルゴリズムの徹底レビュー

顔検出は、幅広いアプリケーションと多くの研究者を抱えるコンピューター ビジョンの古くからのトピックで...

CoCoPIE 主任科学者との対話: AI は審判になれるが、ショーを乗っ取ることはできない | T Frontline

「サッカーのフィールドで最もタブーなことは、誰もが明らかなファウルに気づいているのに審判が見て見ぬ...

AI探偵が事件を解決する3つの秘策

[[241150]]画像出典: Visual China今年のコナン映画は中国でも公開されるそうです...

人工知能はあなたが思っているほど遠いものではないかもしれない

人工知能は偉大で強力だ、多くの人がそう思っていると思います。実際、私たちはコードのスキャンなど、人工...

...

...

サム・アルトマンは、AGI が 2030 年までに登場し、GPT-10 の知能が全人類の知能の合計を超えると予測しています。

「人類は2030年までにAGIを開発するかもしれない。」サム・アルトマンは最近のポッドキャストのイ...

...

AIによる地震予測はテストで有望性を示す

人工知能の助けを借りて地震を予測する新たな試みにより、この技術が将来、人々の生活や経済への壊滅的な影...

...

Keras+LSTM+CRF を使用した固有表現抽出 NER の練習

[[339715]]テキスト分割、品詞タグ付け、固有表現認識は、自然言語処理の分野では非常に基本的な...

最初の生成 AI 安全ガイダンス文書がここにあります。理解できましたか?

10月11日、国家情報セキュリティ標準化技術委員会の公式サイトで「生成型人工知能サービスの基本セキ...