2022 年に AI が組織のランサムウェア防御を強化する方法

2022 年に AI が組織のランサムウェア防御を強化する方法

ランサムウェアは個人や企業にとって深刻な脅威になりつつありますが、人工知能はそれを軽減するのに役立ちます。

人間が操作するランサムウェア攻撃では、脅威アクターが特定の方法を使用してデバイスに侵入します。ネットワークへの侵入には、キーボードの直接操作が頼りになります。

AI は、このような攻撃やその他の攻撃が発生した場合にあなたを保護できます。意思決定はデータに基づいて行われるため、攻撃の被害者になる可能性は低くなります。これらの決定は、顧客体験を変えずに効率を向上させるための広範な実験と調査に基づいています。

AI を使用すると、デバイスのリスク スコアは単一のメトリックに依存しません。むしろ、さまざまな特性やパターンの影響を受けます。攻撃が起こりそうになると警告します。

攻撃者が未知のファイルや無害なファイルを使用した場合でも、AI システムによりプロセスやファイルが起動されないようにします。 2021 年に AI がランサムウェア防御を強化する方法をいくつか紹介します。

1. 機器が危険にさらされているかどうかを予測する

ランサムウェアの除去は素晴らしいですが、攻撃を防ぐことのほうがさらに重要です。デバイスが侵害された場合、注意すべき兆候がいくつかあります。それらは単独では大した意味を持ちませんが、時間が経つにつれて非常に意味のあるものになります。

新しい信号が検出されると、AI 駆動型保護がデバイスを評価します。したがって、リスク スコアは常にそれに応じて調整されます。注意すべきシグナルには、マルウェアの遭遇、行動の侵害、脅威などがあります。

デバイスが実際には危険であるにもかかわらず、誤って「危険ではない」と評価された場合、攻撃者は検出技術では捕捉しにくいアクティビティを実行できる可能性があります。一方、実際には危険ではないデバイスが危険であると判断された場合、顧客エクスペリエンスは損なわれます。

人工知能技術は完璧なバランスを見つけました。顧客エクスペリエンスに影響を与えることなく、デバイスが危険にさらされているかどうかを判断できます。

2. 正当な文書やプロセスの不正使用を特定し防止する

人間が操作するランサムウェア攻撃には、キーボードを操作するフェーズがあります。このフェーズでは、攻撃者は正当なファイルとプロセスを悪用します。

たとえば、ネットワーク列挙は本来無害な動作です。ただし、感染したデバイス上でこれを観察すると、攻撃者が偵察活動を行っていたことが証明される可能性があります。

適応型保護は、ネットワーク列挙を防止するように設計されています。攻撃チェーンを遮断し、さらなる攻撃を防ぎます。

3. パーソナライゼーションとシーン保護

クラウド上のブロック メカニズムは、リアルタイムのリスク スコアの計算に非常に敏感です。これは、システムがインテリジェントな決定を下せることを意味します。デバイスの状態やシーンがブロックされる可能性があります。

人工知能による保護のカスタマイズにより、各デバイスに独自のレベルの保護が確保されます。たとえば、プロセス A は 1 つのデバイスでは許可され、別のデバイスではブロックされる場合があります。すべてはリスクスコアに依存します。

パーソナライズ機能は顧客にとって特に便利です。偽陰性や偽陽性が出る可能性が低くなります。データセットでトレーニングされた ML モデルとは異なり、各デバイスは必要なレベルの保護を受けます。

4. ランサムウェアのペイロードを阻止する

一部の攻撃は中間段階を通過するまで検出またはブロックされません。 AI 駆動型の適応型保護により、最終的なランサムウェア ペイロードから多くの価値を引き出すことができます。

デバイスがすでに侵害されている場合、AI 駆動型保護システムは自動的にアグレッシブ モードを使用してランサムウェアのペイロードをブロックします。重要なデータやファイルの暗号化を防ぎます。攻撃者が身代金を要求することは不可能です。

2022 年にランサムウェア防御を強化しようとしていますか? 取り組みを強化するために人工知能の使用を検討してください。デバイスが危険にさらされているかどうかを予測し、ランサムウェアのペイロードを阻止し、パーソナライズされた保護を提供することで機能します。実際の攻撃に対処するよりも、こうした攻撃を防ぐ方がビジネスにとってははるかに簡単です。ランサムウェア攻撃が成功すると、時間とデータの両方が失われる可能性があります。

結論は

近年、ランサムウェアは非常に深刻な問題になっています。良いニュースとしては、人工知能の進歩が企業の自己防衛に役立っていることです。 AI を第一の防御線として使用することの重要性を見逃してはなりません。

<<:  ガートナー、2022年の銀行・投資サービスにおける3つの注目のテクノロジートレンドを発表

>>:  人工知能プラットフォームソリューションにおける品質エンジニアリング設計

ブログ    
ブログ    

推薦する

人間と人工知能がどのように関係を築くか

人間関係を構築するのに優れているのは人間か人工知能か?実際、この革新的な技術は長い間存在していました...

90%が赤字、中国の人工知能企業は破産の波に直面する可能性

2017年に人工知能が国家戦略目標となって以来、関連産業は急速な発展の機会を迎え、世界で最も収益性の...

MetaGPT AIモデルオープンソース:ソフトウェア会社の開発プロセスをシミュレートし、高品質のコードを生成できます

7月4日、コード生成に重点を置いたAIモデルとしてMetaGPTが発表された。名前は似ているが、Me...

...

2021 年の人工知能の最新動向を示す 15 のグラフ

2021年AIインデックスレポートは、スタンフォード大学の人間中心AI研究所と、ハーバード大学、経済...

Google、人工知能をより有効活用できるよう複数のAIツールをリリース

Google は今週開催された Cloud Next カンファレンスで、さまざまな機械学習ツール、顧...

TPCアライアンス設立:科学的発見の推進に向け、1兆以上のパラメータを持つAIモデルを目指す

11月16日、業界をリードする科学研究機関、米国国立スーパーコンピューティングセンター、そしてAI分...

【専門家がここにいるエピソード6】インタラクションのための人工知能

[51CTO.comからのオリジナル記事] 今回のライブ番組「ビッグネームがやってくる」のゲストは、...

スマート病院: 将来の医療技術のガイドラインとトレンド

スマート病院とは何ですか?最も伝統的な病院でさえ、人、プロセス、資産の広大なネットワークを持つ複雑な...

フィンテック企業はリスク管理に AI をどのように活用しているのでしょうか?

[51CTO.com からのオリジナル記事] 金融テクノロジーのブームは 21 世紀以降急増してい...

AI サイバーセキュリティ脅威マップ

12月15日、欧州連合ネットワーク情報セキュリティ機関(ENISA)は、 「人工知能サイバーセキュリ...

...

AIは旅行業界の困難を軽減できるか?

[[323317]]現時点では、多くの企業が、数か月前に考えていたよりも見通しが不透明であると感じ...

AI エキスパート: ビッグデータ ナレッジ グラフ - 実践経験のまとめ

データ サイエンティストとして、業界のトップ ナレッジ グラフをまとめ、技術専門家と共有して、ビッグ...