AIの4つのタイプについてお話しましょう

AIの4つのタイプについてお話しましょう

人工知能が流行するにつれ、人々はそれがどのように機能し、何ができるのかについて多くの疑問を抱いています。よく聞かれる質問は、「AI には 4 つの種類がある」ということです。編集者が以下で説明します。

AIの4つのタイプは何ですか?

反応型マシン

リアクティブマシンは AI で非常に人気のある概念です。これは、最も基本的かつ最も古いタイプの AI だからです。反応型マシンは、特定の刺激やシナリオにのみ反応するマシンです。その後に登場した多くの AI ソフトウェアとは異なり、過去の経験や大量の知識を活用して特定の状況を評価したり対応したりすることができませんでした。 GPS やデジタルマップを使用して周辺を移動したり、ルートを計画したりすることさえありません。代わりに、彼らは見たものに基づいて動きます。

反応型マシンは、二度と同じ行動をとらないため、チェスやカードゲームなどのゲームに優れています。フィルタリングやおすすめなどのシンプルな機能も非常に優れています。これらは単純なタスクには最適ですが、現実世界にはうまく適用できません。

これらのプログラムは想像力や抽象的思考に欠けており、簡単に騙されてしまうため、顔認識やロボットアシスタントなどの分野には使用できません。

そうは言っても、反応型機械は今日でも広く使用されています。反応型機械がなければ、自動運転車などの技術革新は不可能だからです。

限られたメモリ

限定メモリは、音声クローン効果を作成するために使用される 2 番目のタイプの AI システムです。簡単に言えば、このタイプの AI により、ロボットは情報や経験を「記憶」として保存できるようになります。そして、次に同様の状況に遭遇したときに、この新しい「記憶」を使用して、より正確な予測を行います。優れた過剰反応機構を備えているため、より複雑な機械学習システムで使用されます。

このタイプの AI は強化学習の原理に基づいて動作します。つまり、試行錯誤を経て ML システムを使用して、より適切な意思決定と予測を行うということです。さらに、進化的生成敵対ネットワークを使用します。これは、いくつかの進化を通じて情報を収集するソフトウェアの一種です。ネットワークのシステム更新により、いくつかの変更を適応および組み込むことが可能になりました。

心の理論

これはまだ十分に活用されていないタイプの AI ですが、多くの科学者は、これによって機械が作業の構造を理解できるようになると予測しています。この構造には、人々と彼らが相互作用する環境が含まれます。

長年にわたり、多くの科学者がこの人工知能とそれが人間にどのような影響を与えるかを理解しようと努めてきました。

Theory of Mind は、メタバースを使用して学習をガイドします。限られた記憶とは異なり、一連の試行錯誤を通じて学習する必要はなく、むしろ心の理論に基づく人工知能のために構築された中央ニューラル ネットワークを通じて学習します。このタイプの AI を使用すると、AI 音声ジェネレーターは、元の音声と区別が困難な模倣音声を作成できるようになります。

自己認識型人工知能

自己認識ロボットは、あらゆる技術革新者の夢です。心の理論 AI と同様に、自己認識 AI もほとんど未発見のままです。これは意識を作り出すことができる AI ロボットであり、ロボットが自身の内部状態を評価できるようになります。いわゆる自己認識製品を製造している発明家が数人いるという報告があるが、これらはすべて詐欺のようだ。

しかし、科学者たちはゆっくりと、この種の人工知能についてさらなる発見をしてきました。このタイプの AI により、ロボットはパターンを認識し、それを複製できるようになります。これは、AIが自身の内部状態を評価できるためです。

自己認識型 AI の利点は無限です。他の機械に接続しながらも独立して動作できる機械が実現します。同社は成功だけでなく失敗からも学ぶことができるため、革新能力は他に類を見ないものとなるでしょう。

しかし、この技術はまだ発展途上です。科学者たちは、人間の意識をモデルとして使用せずに、自己認識型人工知能を作成する方法をまだ見つけていません。

それでも、自己認識型 AI の可能性に興奮しないわけにはいきません。人工知能にはいくつかの潜在的な用途があります。これらのアプリケーションの一部はすでに使用されていますが、他のアプリケーションはまだ開発中です。

結論は

これで、AI の種類とその用途について理解が深まりました。しかし、音声クローンにはこれらのシステムが使用されていることをご存知でしたか?近い将来、この技術はさらに進歩するでしょう。いつか私たち全員が自分専用のロボットを持つ日が来るかもしれませんが、それまでは AI 音声クローンを使用して、非常にクールなオーディオ効果を作成できます。


<<:  マイクロソフト、感情分析技術の販売を中止し、顔認識ツールの使用を制限

>>:  シンボリック AI がビジネス運営にとって重要な理由は何ですか?

推薦する

海外メディア:人工知能はすでに自身のミスを警告できる

[[354534]]海外メディアは、人工知能は急速に発展しており、この分野における最新の技術的成果が...

Go 向けに設計された機械学習ライブラリ Gorgonia: TensorFlow や Theano のライバル

[[184558]] Gorgonia は、Go での機械学習を容易にし、多次元配列を含む数式の記述...

通信事業者のRPAロボット活用事例紹介

国際・国内電話サービス、インターネット事業、通信ネットワーク資源・設備サービスなどを主力事業とする米...

コインの端を歩くこともできます!陸上最小のカニ型ロボットが開発され、将来的には低侵襲手術に利用できるようになる。

この「横歩き」マイクロロボットはとってもかわいいです!サイエンス・ロボティクス誌5月号に、サブミリメ...

...

オープンソースの Gemma モデル: Google の言語の奇跡。命令チューニング、低ランク適応、Switch Transformer を使用して小さなモデルで遊ぶことができます。

言語は人間にとって最も重要なコミュニケーションツールであり、人工知能の分野における最も挑戦的な研究対...

RPAのグローバルリーダーであるUiPathが中国市場への本格参入を発表

UiPath は、世界的なロボティック プロセス オートメーション (RPA) 分野の主要プラットフ...

自動運転は衛生分野に適用され、問題点に直接対処し、将来性が期待できる

自動運転技術の開発は加速しており、商業的な検討も日々増加しています。現段階では、業界では貨物輸送と旅...

人工知能は人間に取って代わるでしょうか?将来、誰もがスーパーパワーを持つようになると思いますか?

ここ数十年、人類の技術は驚くほど急速に発展してきました。多くの映画、テレビ番組、小説などの影響で、多...

...

エネルギーの未来: 仮想発電所はエネルギー転換を加速できるか?

コペルニクス気候変動サービスによると、2023年は記録上最も暖かい年となっただけでなく、世界の平均表...

機械学習を予知保全に適用するにはどうすればよいでしょうか?

機械学習と産業用 IoT (IIoT) デバイスから収集されたデータを組み合わせることで、プロセスの...

AIのヒット曲:主人公はプログラマー、作曲家は気を散らされている

米国の著作権法では「人間」という言葉はほとんど使われておらず、この問題を扱った訴訟は歴史上ほとんど起...

AI支援農業建築:農業生産効率の向上

科学技術の急速な発展に伴い、人工知能(AI)はさまざまな分野にますます統合されつつあり、農業分野も例...