機械学習はデータセンターの経済性を劇的に変え、将来の改善への道を開きます。 機械学習と人工知能がデータセンターに導入され、ラックが ASIC、GPU、FPGA、スーパーコンピューターでいっぱいになり始めるにつれて、ハイパースケール サーバー ファームの外観と雰囲気が変化しています。 これらの技術により、これまでは膨大な量のデータ処理を必要としていた機械学習システムのトレーニングに利用できるコンピュータの処理能力が向上します。最終的な目標は、よりスマートなアプリケーションを構築し、企業がすでに日常的に使用しているサービスを強化することです。人間の判断と常識だけに頼ると、求められる正確性と有効性の基準に遠く及びません。 IT サービスに対する膨大な需要を満たす唯一の持続可能な方法は、データ主導の意思決定に完全に移行し、すべてのデータを活用して成果を向上させることです。同様の規模や専門知識を持たない企業やマネージド サービス プロバイダーの中には、データ センター管理ソフトウェアやこのテクノロジーを活用するクラウドベースのサービス プロバイダーが利用できるようになったため、機械学習を早期に導入する企業もあります。 IDC によると、2022 年までにデータセンターの IT 資産の 50% が組み込み AI テクノロジーにより独立して運用されるようになるとのことです。計画と設計、ワークロード、稼働時間、コスト管理など、多くの全体的な操作は、機械学習を使用してデータセンターで最適化できます。 以下は、今日のデータセンター管理における機械学習の最大の使用例の一部です。
機械学習は人間よりも速く動作するため、テラバイト単位の履歴データを調べ、ほんの一瞬で決定にパラメータを適用することができます。これは、データセンター内のすべてのアクティビティを追跡する場合に役立ちます。ベンダーとデータセンター運営者が機械学習で取り組んでいる主な問題のうち 2 つは、効率性の向上とリスクの軽減です。 たとえば、200 を超えるデータセンターを擁する世界最大のホスティング プロバイダーである Digital Realty Trust は、最近、機械学習テクノロジーのテストを開始しました。インフラストラクチャを維持するために必要な膨大な量の基盤システム、デバイス、データを消費し、処理する人間の能力は、すぐに枯渇するでしょう。 Digital Realty は、優れたリアルタイム処理、反応、通信、意思決定機能により、この恩恵を受けることになります。 要するに、データセンター運営者には AI と機械学習を活用するための選択肢が数多くあり、テクノロジーがより手頃な価格で高度になるにつれて選択肢は増えていくでしょう。明るい未来が待っています。 |
>>: Colossal-AIはHugging Faceコミュニティをシームレスにサポートし、低コストで大規模モデルを簡単に加速します。
すでに、いくつかの日常的または退屈な作業がロボットや自動化によって置き換えられていますが、それによっ...
バッチ正規化は、ディープラーニング分野における大きな進歩の 1 つであり、近年研究者によって議論され...
最近、Googleは、昨年発表した「PRADO」をさらに改良した小型モデルでSOTA結果を達成した新...
2018 年 10 月 19 日、毎年恒例のオーディオおよびビデオ技術カンファレンス LiveVid...
常に注目度の高い人工知能分野に関連するアプリケーションは、常に大きな注目を集めています。人工知能は電...
スペイン紙エル・ムンドのウェブサイトが2月20日に報じたところによると、ソフトウェア、ハードウェア、...
タンパク質予測モデルAlphaFoldがAIの世界に津波のような波を起こした後、Alphaファミリー...
野心的な DeepMind は、ディープラーニング ネットワークと従来のアルゴリズムの間に橋を架けよ...
AI応用の時代において、人工知能技術は研究室から産業化へと移行しています。人工知能が徐々に製品応用市...
最近、北京市自転車・電動自動車産業協会が主催した「第一回ターミナル配送インテリジェント交通サミットフ...
1. 事業の状況及び背景まずはブリッジプラットフォームを紹介します。 Bridge は、Zhihu ...
古典的なデータマイニングアルゴリズムのトップ 10 は次のとおりです。導入C4.5 は決定木アルゴリ...