PyGWalkerを使用して表形式のデータを視覚化および分析する

PyGWalkerを使用して表形式のデータを視覚化および分析する

導入

Jupyter Notebook に大量のデータがあり、それを分析して視覚化したいとします。 PyGWalker は、この作業を非常に簡単にする魔法のツールのようなものです。データを取得して、Tableau と同じように操作できる特別な種類のテーブルに変換します。複雑なコードに迷うことなく、データを視覚的に探索し、操作して、パターンや洞察を確認することができます。 PyGWalker はすべてを簡素化し、ユーザーが手間をかけずにデータをすばやく分析して理解できるようにします。 PyGWalker は Kanaries によって開発されました。

【公式GitHubコードリポジトリ】:

https://github.com/Kanaries/pygwalker

【コード】:

Google Colab (https://colab.research.google.com/drive/171QUQeq-uTLgSj1u-P9DQig7Md1kpXQ2?usp=sharing)

Kaggleノートブック

開発者プロフィール:

https://github.com/ObservedObserver

特定の探索

pip 経由で PyGWalker ライブラリをインストールします。

 !pip install pygwalker -q

Jupyter Notebook で PyGWalker を使い始めるには、pandas と pygwalker という 2 つの重要なライブラリをインポートする必要があります。

 import pandas as pd import pygwalker as pyg

import pandas as pd の行を使用すると、表形式のデータを操作できます。一方、import pygwalker as pyg は PyGWalker ライブラリを導入します。

インポートすると、PyGWalker を既存のワークフローにシームレスに統合できます。

たとえば、pandas を使用してデータを読み込むことができます。

 df = pd.read_csv('my_data.csv')

次に、次のようにデータ フレームを引数として渡して、「gwalker」という名前の PyGWalker インスタンスを作成します。

 gwalker = pyg.walk(df)

提供されたコマンドを実行すると、コード セルの下に新しい出力が表示されます。出力にはインタラクティブなユーザー インターフェイスが含まれます。

写真

インターフェースには、データの分析と探索のためのさまざまなドラッグ アンド ドロップ機能が用意されています。データを操作するための便利でインタラクティブな方法を提供し、データの視覚化、関係性の探索などのタスクを実行できます。

PyGWalker を使用すると、Tableau のようなユーザー インターフェイスを使用してデータを分析および視覚化できるようになります。

写真

PyGWalker はマーカーの種類を変更する柔軟性を提供し、さまざまな図を作成できます。たとえば、目的の変数と線マーカーの種類を選択するだけで、簡単に折れ線グラフに切り替えることができます。

写真

ステッチビューを作成して、さまざまな測定値を比較することもできます。複数の測定値を行または列に追加することで、簡単に並べて分析および比較できます。

写真

特定のカテゴリや特性に基づいて、データをさまざまなセクションに整理できます。これにより、データの異なるサブセットを個別に分析および比較できるようになります。

写真

PyGWalker を使用すると、データを表形式で表示し、分析タイプとセマンティック タイプをカスタマイズできます。データを構造化された方法で簡単に視覚化し、データの分析および解釈の方法を特定のニーズに合わせてカスタマイズできます。

写真

データ探索結果をローカル ファイルに保存することもできます。

要約する

PyGWalker は、さまざまな機能を提供する汎用ライブラリです。この強力なツールを活用して、データ分析と視覚化のスキルを向上させましょう。

<<: 

>>:  エッジにAIを導入する3つのメリット

ブログ    
ブログ    
ブログ    

推薦する

機械学習が自動車産業を次のレベルに引き上げる方法

機械学習は、ユーザーエクスペリエンスを向上させ、ビッグデータの力を活用することで、自動車業界を次のレ...

ディープラーニングを使って背景を除去し、切り抜きを実現する方法の詳細な説明

上記のコースで、経験豊富な Web 開発者である Alon Burg と出会い、偶然にも同じような興...

Google AI チームが新しい「流体アノテーション」を発表: 画像アノテーションの速度が 3 倍に向上

(原題: Google が新しいソリューションを発表、画像注釈の速度が 3 倍に向上) [[2505...

...

...

高性能な PyTorch はどのように実現されるのでしょうか?経験豊富な専門家がまとめた落とし穴を避ける10のヒント

最小限の労力で最も効率的な PyTorch トレーニングを完了するにはどうすればよいでしょうか? P...

IT サービス管理における 3 つの主要な NLP 使用例

[[421132]] [51CTO.com クイック翻訳]自然言語処理 (NLP) は、機械学習の専...

Daguan Data: NLP の概要と自動テキスト分類アルゴリズムの詳細な説明

自然言語処理は人工知能の分野で常に重要なトピックであり、2018年も話題となりました。大量のテキスト...

技術革新により、AI人材が全国各地で活躍できるようになった

人力の60倍の速さで作業する送電線検査画像「認識者」、ベテラン並みの監視ビデオ「品質検査員」、さまざ...

...

Cloudera のチーフアーキテクト Doug Cutting が Hadoop と人工知能について語る

[51CTO.com オリジナル記事] Doug Cutting 氏はオープンソース コミュニティに...

...

Google の具現化された知能に関する新たな研究: RT-H が登場、RT-2 より優れている

GPT-4などの大規模言語モデルがロボット研究と統合されるにつれて、人工知能はますます現実世界に進出...

MITの科学者が数時間でロボットヒトデを作る新システムを設計

水中の海洋生物を研究する場合、動物たちにとって不自然に見えて怖がらせないような装置を使うと役に立つで...

自動運転車の後、どのような仕事が人工知能に置き換えられるのでしょうか?

自動運転がどれだけ遠い未来の話なのか議論されている中、自動運転の旅客バス、アルファバス・スマートバス...