GPT-4 はプラグインを 40 回呼び出しましたが、成功せず、断固として諦めました。無効な呼び出しと応答拒否が頻繁に発生しました。

GPT-4 はプラグインを 40 回呼び出しましたが、成功せず、断固として諦めました。無効な呼び出しと応答拒否が頻繁に発生しました。

今年初め、OpenAI は ChatGPT がサードパーティのプラグインを統合できるようにし、ChatGPT がインターネットに接続できないという障壁を打ち破りました。

多くの人がこう叫びました。「ChatGPT の出現は「iPhone の瞬間」であり、サードパーティ プラグインの統合は「iOS App Store」の瞬間です。」

不完全な統計によると、発表後数日以内に、ChatGPT は 70 を超えるプラグインをリリースしました。数か月が経過しましたが、ChatGPT のこれらのプラグインはどれほど効果的でしょうか?この記事は、ニューヨーク大学のアーネスト・デイビス氏とテキサス大学オースティン校のスコット・アーロンソン氏によるものです。彼らは、ChatGPT の背後にある大規模モデルである GPT-4 によって呼び出されるプラグインをテストしました。

論文アドレス: https://arxiv.org/pdf/2308.05713.pdf

具体的には、この報告書では、2023年6月から8月の間に、Wolfram Alpha(以下、GPT4 + WA)プラグインとCode Interpreter(以下、GPT4 + CI)プラグインを使用して、高校および大学レベルの科学と数学の問題105件に対して大規模言語モデルGPT-4をテストしたことを説明しています。

彼らは次のように結論付けた。

テストされたさまざまな問題において、いずれかのプラグインを使用した GPT-4 は、GPT-4 単独の場合よりも大幅に優れたパフォーマンスを発揮しました。さらに、この研究では、GPT-4 は 1 年前に存在していたどの AI よりもほぼ間違いなく強力であると結論付けられました。しかし、その信頼性は十分とは言えず、間違った回答が出力されたり、まったく回答が出力されなかったりすることがよくありました。

全体的なスコアに基づいて、この論文では、これらのシステムのパフォーマンスは平均的な学部生のパフォーマンスと同等であると考えています。これらのシステムは、優秀な生徒でさえ難しいと感じるいくつかの問題を解決しますが、中学生でさえ簡単だと感じるいくつかの問題は解決できません。

さらに、GPT-4 とプラグイン、特に Wolfram Alpha の間にはまだ改善の余地がたくさんあることが調査で判明しました。 GPT-4 は、Wolfram Alpha が受け入れたり有用な出力を生成したりするのが困難な方法で質問を表現することがよくあります。

たとえば、問題 B.35 (論文の付録を参照) では、GPT-4 は Wolfram Alpha を 40 回呼び出してイベントの日付を取得しようとしますが、毎回失敗して諦めます。一方、プラグインなしの GPT-4 は日付を認識します。 GPT-4 に長さの天文単位での回答を求める質問 A.14 では、Wolfram Alpha はメートル単位で正しい回答を返しましたが、その後、Wolfram Alpha を 8 回呼び出したにもかかわらず、システムはそれを天文単位に変換できませんでした。

GPT-4 はプラグインへの無駄な呼び出しを作成することもあります。たとえば、問題 C.11 では、GPT は次のように WA と対話します。

これらの結果は、GPT-4 がプラグイン、特に Wolfram Alpha の機能を十分に活用できていないことを示唆しています。

一般に、これらのシステムは、単一の数式を呼び出すことによって解決できる問題に対して最も強力です。一般的に、人間が空間視覚化を使用して解決する傾向のある問題は苦手です。さらに、これらのシステムは一般に、多くの異なるタイプの計算を組み合わせる問題を解決するのが苦手であり、非常に大きい数値や非常に小さい数値を処理するのが困難です。 GPT-4 には、プラグインによって返される回答が意味をなすか、物理的に意味をなすかを検出する機能が多少ありますが、信頼性が高くなく、エラーの原因を診断したり、エラーから回復したりする機能はほとんどありません。

実験結果

この研究では、「任意の数値」テスト セット、「計算不要」テスト セット、「動機付け数値」テスト セットの 3 つのテスト セットを作成しました。

表 1 は、3 つのテスト セットの問題の成功例と失敗例 (成功ケース 3 つと失敗ケース 3 つ) を示しています。成功したケースでは、GPT4 + WA と GPT4 + CI の両方が正しい答えを得ましたが、失敗したケースではその逆でした。

著者らは、テスト セットが小さすぎて、無計画に構成されているため、統計的に有効な結論を裏付けることはできないと述べていますが、この研究はいくつかの結論を示唆しています。両方のプラグインは機能が強力であり、それぞれが他方では解決できない問題を解決できます。以下にいくつかの実験結果を見てみましょう。

次の表は、理科と数学(最初の 16 問)の結果を示しています。

下の表は、クーロンの法則、三次元幾何学、確率などを含む科学的および数学的問題の結果を示しています。 GPT4+WA スコアは 8.25 ポイント (32 ポイント満点)、GPT4+CI スコアは 10 ポイント (32 ポイント満点) です。

次の表は、「計算不要」テスト セットの質問 1 ~ 32 の結果を示しています。問題カテゴリは、日食、距離の組み合わせ問題、川の点間の距離問題などにまとめることができます。

次の表は、「計算不要」テスト セットの結果を示しています。GPT4+WA: 30.7/53、GPT4+CI: 34.2/53、ランダム推測のスコアは 22.6/53 です。

次の表は、ブラックホール、幾何学、重力などのカテゴリをカバーする Motivated Numerical テスト セットでの実験の結果を示しています。GPT4+WA: 14.3/20、GPT4+CI: 13.8/20。

詳細については、原文論文を参照してください。

<<:  コードを1行変更するだけで、PyTorchのトレーニングを3倍高速化できます。これらの「高度なテクニック」が鍵となります。

>>:  mPLUG-Damo アカデミー オープンソース マルチモーダル対話モデル技術とアプリケーション分析

ブログ    
ブログ    

推薦する

レポート:AI脅威論は誇張されている:導入と保守のコストが高いため、影響はそれほど早く広範囲に及ぶことはない

MITコンピュータ科学・人工知能研究所(MIT CSAIL)は3月3日、現段階では人間はAIに仕事を...

...

「ビッグデータが古い顧客を殺す」といった混乱が顕著になる中、どのような「アルゴリズム」が必要なのでしょうか?

次のような経験をしたことはありませんか。求人検索サイトで仕事の希望に関するアンケートに答えると、サイ...

Keras 機能 API によるディープラーニング

[[380280]] Keras Python ライブラリを使用すると、ディープラーニング モデルを...

HipHop アルゴリズム: マイクロブログの相互作用関係を使用してソーシャル サークルをマイニングする

[[120924]] Weibo 環境において、Weibo ユーザーのソーシャル サークルや興味サー...

トップマガジンTPAMI2023!生成AIと画像合成のレビューを公開しました!

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

ブロックチェーンは世界を変えつつありますが、人類はどこまで到達できるのでしょうか?

猫を飼うことで生じる混雑により、人々はブロックチェーンの力に驚嘆し始めました。数字で構成されたこの世...

人工知能技術の助けを借りて、人々は携帯電話を通じて皮膚がんを診断できるようになるかもしれない

最近、「ネイチャー」誌は表紙に次のような記事を掲載した。「ディープラーニングアルゴリズムを使用して皮...

工業情報化省がロボット産業の「第14次5カ年計画」を発表:2035年までに指定規模以上の製造業でデジタル化が普及する

12月28日、工業情報化部など各部門は「第14次5カ年計画:インテリジェント製造業発展計画」(以下、...

ディープラーニングと靴を組み合わせると、誰かがそれを使ってストレスレベルを検出しようとします。ワイヤレス操作、84%の精度

ビッグデータダイジェスト制作著者: カレブ現代人の生活プレッシャーはますます大きくなっていると言わざ...

画像とテキストを統合的に生成するMiniGPT-5が登場:トークンがVokenになり、モデルは書き込みを継続できるだけでなく、自動的に画像を追加することもできます

ビッグモデルは言語から視覚へと飛躍し、テキストと画像のコンテンツをシームレスに理解して生成する可能性...

オープンソースのラマ2の背後には、若い中国人たちの力がある

最近、Llama 2 のオープン ソース化により、Yann LeCun 氏や業界関係者の多くが「ビッ...

2022 RPA認定ランキング

ロボティック・プロセス・オートメーション (RPA) は、ビジネス プロセスの合理化に役立つ重要なテ...

ガートナー:今後2年間で、テクノロジープロバイダーの3分の1がAIに100万ドル以上を投資する

9月30日、ガートナーの最近の調査によると、人工知能技術計画を持つテクノロジーおよびサービスプロバイ...

このトレンドは止められない!すべてのデータ サイエンティストが知っておくべき 5 つのグラフ アルゴリズム

すべてがつながっている世界では、ユーザーは独立した個人ではなく、何らかの形で互いにつながっています。...