生成 AI: サイバーセキュリティにとってのメリットか、それとも危険か?

生成 AI: サイバーセキュリティにとってのメリットか、それとも危険か?

脅威の状況が絶えず変化する中、高度なサイバー攻撃に対する防御手段として、生成型人工知能 (GAI) がますます注目を集めています。では、生成 AI はサイバーセキュリティにとって恩恵となるのでしょうか、それとも危険となるのでしょうか?

しかし、他の強力なツールと同様に、サイバーセキュリティへの影響については激しい議論が交わされています。生成的敵対ネットワーク (GAN) や自己回帰モデルなどの技術を含む生成 AI は、サイバーセキュリティ コミュニティに希望と懸念の両方をもたらしました。これはサイバー防御を強化できる恩恵となるのか、それともデジタル脆弱性による被害を増幅させる可能性があるのか​​?

潜在的なメリット

生成 AI は、多くの場合、生成的敵対ネットワーク (GAN) や変分オートエンコーダー (VEE) などのディープラーニング モデルを活用しており、大規模なデータセットから学習し、人間が作成したデータと非常によく似たコンテンツを生成することができます。

脅威の検出と分析: 生成 AI は、サイバー脅威を検出する従来の方法を強化できます。履歴データからパターンを学習することで、新しい攻撃ベクトルや脆弱性を予測して特定できます。

データ拡張: 機械学習アルゴリズムのトレーニングには、大量のラベル付きデータが必要です。生成 AI は現実世界のシナリオを反映した合成データを作成できるため、機密情報を危険にさらすことなく、AI 駆動型セキュリティ システムの精度と堅牢性を向上させることができます。

フィッシングやなりすましの削減: サイバー犯罪者は、フィッシングやファーミングなどの欺瞞的な手法を頻繁に使用します。生成 AI は、潜在的なフィッシング攻撃をシミュレートおよび予測するために使用できます。

潜在的な危険

生成 AI は大きな可能性を秘めていますが、サイバーセキュリティに適用すると大きな懸念も生じます。

攻撃能力の強化: AI は防御メカニズムを強化できるのと同様に、サイバー犯罪者の能力も強化できます。ハッカーは生成 AI を使用して、従来のセキュリティ対策を回避する複雑でカスタマイズされた攻撃を作成し、検出と対処を困難にすることができます。

AI 生成ディープフェイク: 生成 AI を搭載したディープフェイクは、オーディオおよびビジュアル コンテンツを前例のないレベルで操作できるため、なりすまし攻撃、偽ニュースの拡散、通信チャネルの信頼の損なわれなどの分野でリスクをもたらします。

プライバシーのリスク: 生成 AI には大規模なデータセットからの学習が含まれており、その性質上、トレーニングに使用されるデータの所有者のプライバシーに関する懸念が生じます。この技術は、倫理的かつ責任を持って取り扱われない場合、個人情報の漏洩につながる可能性があります。

サイバーセキュリティにおける生成的 AI の活用事例: AI 時代のデジタル防御の強化

脅威がますます高度化、動的化しているサイバーセキュリティの世界では、生成型人工知能 (GAI) が強力な味方として登場しています。

異常検出と脅威ハンティング:異常検出は効果的なサイバーセキュリティの中心です。 GAI は、システム内の「正常な」動作パターンを理解して学習する能力を備えているため、大きな進歩の兆しとなる可能性のある逸脱を識別するのに適したツールとなります。

フィッシングの検出と防止:フィッシング攻撃は依然として根強い脅威であり、多くの場合、偽の電子メールや Web サイトを通じて人間の脆弱性を悪用します。 GAI は、正当なコンテンツと悪意のあるコンテンツの大規模なデータセットを分析および比較することで、防御を強化できます。

脆弱性管理:脆弱性を修正する競争において、GAI はプロセスを簡素化します。コードを完全にスキャンし、潜在的な弱点を特定することで、脆弱性を自動的に評価できます。これにより、脆弱性の特定と優先順位付けが迅速化され、サイバーセキュリティ チームはリソースをより効果的に割り当てることができます。

行動ベースの認証:パスワードやトークンのみに依存する従来の認証方法は、侵害に対してますます脆弱になっています。 GAI は、システムやデバイスと個人の固有の相互作用パターンを活用する動作ベースの認証を導入します。

敵対的攻撃の緩和:逆説的ですが、GAI は攻撃と防御の両方に使用できます。敵対的攻撃では、AI システムを操作して誤った出力を生成します。 GAI を使用して、敵対的攻撃に対して堅牢なモデルを開発します。

<<:  AI開発と倫理におけるリアリズムの役割

>>: 

ブログ    
ブログ    

推薦する

人工知能が医療画像をどのように変えるか AI は医療画像の世界における第二の目となる

人工知能は多くの分野に影響を及ぼしています。しかし、いくつかの大きな変化が起こっており、その 1 つ...

JD Digits JDDコンペティションが終了、「自動運転」と「人口動態国勢調査」の世界チャンピオンが発表

1月13日、JDD-2018 JDデジタルテクノロジーグローバルエクスプローラーコンペティションの世...

何百万人もの人々が「焼けた赤ちゃん」の写真を見ました!バークレー教授が噂を否定:AI画像検出器は役に立たない

AI画像検出器が再び攻撃を受けました!最近、中東紛争の写真が大量にインターネット上に公開され、極限状...

...

...

大企業が AI 関連の合併や買収に夢中になっていることについてどう思いますか?

[51CTO.com からのオリジナル記事] ご存知のとおり、AI は医療から旅行まで、あらゆる分...

諸刃の剣、顔認識技術はどのように発展すべきか?

[[265710]]長らく技術革命の中心地となってきたサンフランシスコは、現地時間の火曜日に「秘密...

高齢者が松葉杖を捨てるのも夢ではない、新たなウェアラブルデバイス「スーパースーツ」をSeismicが開発

BBCによると、サイズミック社は「スーパースーツ」と呼ばれる新しいウェアラブルデバイスを開発した。こ...

AIは消費者行動にどのような影響を与えるのでしょうか?

著者: ユン・チャオ[51CTO.com からのオリジナル記事]コンピュータ プログラミングを使用し...

人間がロボットや AI より得意とする 7 つの仕事

ロボットや AI は人間が行う多くの作業を実行できますが、人間がロボットよりも上手にできる仕事もまだ...

...

推奨システムにおけるTensorFlowの分散トレーニング最適化の実践

著者 | Yifan、Jiaheng、Zhengshao などMeituan の高度にカスタマイズさ...

マシンビジョンについて知っておくべきこと

マシンビジョンは急速に発展している人工知能の分野です。簡単に言えば、マシンビジョンとは、測定と判断の...

時間変換に基づく初のビデオ移行攻撃アルゴリズム、復旦大学の研究がAAAI 2022に選出

[[441526]]近年、ディープラーニングは一連のタスク(画像認識、物体認識、セマンティックセグメ...