Huang が H100 を「ブースト」: NVIDIA が大規模モデル アクセラレーション パッケージを発表、Llama2 推論速度が 2 倍に

Huang が H100 を「ブースト」: NVIDIA が大規模モデル アクセラレーション パッケージを発表、Llama2 推論速度が 2 倍に

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

大規模モデルの推論速度がわずか1ヶ月で2倍に向上しました。

NVIDIA は最近、LLM 推論専用の加速プログラムである H100 用の「チキン ブラッド パッケージ」のリリースを正式に発表しました。

おそらく、来年発売される GH200 を無駄に待つ必要はなくなるでしょう。

GPU の計算能力は、常に大規模モデルのパフォーマンスに影響を与えます。ハードウェア プロバイダーとユーザーの両方が、より高速な計算を望んでいます。

大規模モデルを支えるハードウェアの最大手サプライヤーとして、NVIDIA は大規模モデルのハードウェアを高速化する方法を研究してきました。

NVIDIA は多くの AI 企業との協力を通じて、ついに大規模モデル推論最適化プログラム TensorRT-LLM (略して TensorRT) をリリースしました。

TensorRT は、大規模モデルの推論速度を 2 倍にするだけでなく、非常に使いやすいです。

C++ と CUDA に関する深い知識がなくても、最適化戦略を素早くカスタマイズし、H100 で大規模なモデルをより高速に実行できます。

Nvidiaの科学者ジム・ファン氏はリツイートし、Nvidiaの「もう一つの優位性」はGPUのパフォーマンスを最大化できるサポートソフトウェアだとコメントした。

Nvidia は、Huang 氏の「買えば買うほど節約できる」という言葉を実践するかのように、ソフトウェアを使って自社の製品を強化しているが、それでも価格の高さに不満を言う人がいるのは変わらない。

価格に加えて、一部のネットユーザーはその運用効果に疑問を呈している。

パフォーマンスが何倍にも向上すると常に宣伝されていますが、私たち自身で Llama 2 を実行すると、1 秒あたり数十のトークンしか処理できません。

本当に効果があるかどうかは、さらにテストする必要があるかもしれません。まずは TensorRT を詳しく見てみましょう。

大規模モデルの推論速度を2倍にする

大規模モデルを実行する場合、TensorRT-LLM 最適化後の H100 はどれくらい高速になりますか?

Nvidia の発表では、Llama 2 と GPT-J-6B の 2 つのモデルのデータが提供されました。

最適化された H100 では、Llama 2 の推論速度は A100 の 4.6 倍、8 月の最適化されていない H100 バージョンの 1.77 倍です。

GPT-J-6Bの推論速度は、8月の時点でA100の8倍、最適化されていないバージョンの2倍です

TensorRT は、さまざまな LLM のニーズに基づいて最適化ソリューションを迅速にカスタマイズできるオープンソースのモジュール式 Python API も提供します。

この API は、ディープラーニング コンパイラ、カーネル最適化、前処理/後処理、およびマルチノード通信機能を統合します。

その中で、GPT(2/3)やLlamaなどの一般的なモデルについては、そのまま使用できるカスタマイズ版も存在します。

TensorRT の最新のオープンソース AI カーネルを通じて、開発者は、Transformer を大幅に高速化するアテンション アルゴリズム FlashAttention を含むモデル自体を最適化することもできます。

では、TensorRT はどのようにして LLM 推論速度を最適化するのでしょうか?

まず、TensorRT のマルチノード共同作業モードの最適化の恩恵を受ける必要があります。

Llama のような大規模なモデルは単一のグラフィック カードでは実行できず、複数の GPU を同時に実行する必要があります。

以前は、このタスクを実行するには、モデルを手作業で分解する必要がありました。

TensorRT を使用すると、システムはモデルを自動的に分割し、NVLink を介して複数の GPU 間で効率的に実行できます。

第二に、TensorRT は動的バッチ処理と呼ばれる最適化されたスケジューリング技術も使用します。

推論プロセス中、LLM は実際にモデルの反復を複数回実行します。

動的バッチ処理テクノロジーは、次の一連のリクエストを処理する前にタスクのバッチ全体が完了するのを待つのではなく、完了したシーケンスを直ちに実行します。

実際のテストでは、動的バッチ処理により LLM の GPU 要求スループットが半分に削減され、運用コストが大幅に削減されました。

もう 1 つの重要なポイントは、メモリ消費を削減するために16 ビット精度の浮動小数点数を 8 ビット精度に変換することです

トレーニング段階では、FP16 と比較して FP8 は消費するリソースが少なく、INT-8 よりも精度が高く、モデルの精度に影響を与えずにパフォーマンスが向上します。

Hopper Transformer エンジンにより、モデル内のコードを手動で変更する必要なく、FP16 から FP8 への変換とコンパイルがシステムによって自動的に完了します。

現在、TensorRT-LLM の早期バージョンがダウンロード可能であり、正式バージョンは数週間以内にリリースされ、NeMo フレームワークに統合される予定です。

もう一つ

大きな出来事が起こるたびに、レーウェンフックは必ずそこにいます。

Nvidiaの発表では「Metaなどの大手AI企業との協力」については触れられていたが、OpenAIについては触れられていなかった。

この発表から、一部のネットユーザーがこの点を発見し、OpenAI フォーラムに投稿しました。

老黄(犬の頭)に指示されなかったのは誰か見てみましょう

Lao Huang はどのような「サプライズ」をもたらしてくれると期待していますか?

<<: 

>>:  ジェネレーティブAIは企業にとって新たなリスクとなっているが、重要な問題を放置すべきではない

ブログ    

推薦する

政府における人工知能の積極的な役割

近年、政府の間ではAIへの関心が高まっており、さまざまなAIベースのアプリケーションのパイロットプロ...

開発者向け機械学習プラットフォーム 18 選

[[255723]]機械学習プラットフォームは未来の波ではなく、今起こっていることです。開発者は、自...

ByteDance アルゴリズムの面接の質問、解けますか?

数日前、私の友人がByteDanceの面接を受けました。面接官は彼にリンクリストアルゴリズムの質問を...

Microsoft OfficeがCopilot: Princessに接続されている場合は、

AIの助けがあれば、将来のオフィスではそれほど多くのコーヒーは必要なくなるかもしれません。サイエン...

海外メディア:アップルは2025年までに完全自動運転車を発売する可能性

アップル社が2025年までに完全自動運転車を発売する計画だとブルームバーグが報じたことを受け、同社の...

MLP は視覚研究に潜在的な驚きをもたらすでしょうか?最近のMLP画像分類作業の概要と分析

画像分類は、コンピューター ビジョン研究において常に非常に基本的で重要なタスクです。過去 10 年間...

LLaVA: GPT-4V(ision) のオープンソース代替品

LLaVA (Large Language and Vision Assistant) は、画像翻訳...

KuaishouとNVIDIAが提携し、業界最先端のGPUコンピューティングインフラストラクチャを展開

1日あたり2億人以上のアクティブユーザーを抱える快手には、130億本以上の短編動画が蓄積されており、...

BEV の可能性の限界を探ろう! DA-BEV: 新しい教師なし BEV SOTA ソリューション!

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

自動運転AIアルゴリズムとマルチセンサー融合技術

高度な自動運転は、周囲の環境を高いレベルで認識し、人間の介入をほとんどまたはまったく必要とせずに車両...

...

北京で百度脳産業イノベーションフォーラムが閉幕、AIの文脈でインテリジェント政府業務を解読

近年、人工知能(AI)の急速な台頭と各産業への応用は、社会経済の生産構造と生産関係に破壊的な影響を及...

機械学習、人工知能、ディープラーニングの関係は何ですか?ついに誰かが明らかにした

「機械学習」、「人工知能」、「ディープラーニング」という 3 つの用語は混同されることが多いですが、...

OpenAIも996に取り組んでいますか?元従業員が告白:コード貢献度4位、6日間勤務することが多かった

AI 業界の人なら、OpenAI が先進的な技術と高い給与で AI 業界のリーダーであることは知って...