製造業者はデジタルツインをどのように活用して生産性を向上できるでしょうか?

製造業者はデジタルツインをどのように活用して生産性を向上できるでしょうか?

メーカーは、競争上の優位性を獲得し、コストを削減し、顧客によりカスタマイズされた体験を提供するために、さまざまな先進技術に投資しています。製造業界で使用されている主要なテクノロジーの 1 つに仮想シミュレーション、つまりデジタル ツインがあります。このテクノロジーの使用は近年増加しており、あらゆる規模の製造業者に受け入れられ始めています。

デジタルツインとは何ですか?

デジタル ツインは、複数の分野にまたがる概念です。デジタル テクノロジーとデータ分析に基づいて、物理的なエンティティやプロセスをより深く理解し、シミュレートし、最適化するために、現実世界のデジタル コピーまたはモデルを作成しようとします。デジタル ツインには通常、次の側面が含まれます。

物理エンティティのモデリングとシミュレーション:デジタル ツインでは、実際の物理プロセスと動作をシミュレートできる物理エンティティ (機械、機器、建物など) のデジタル モデルを作成します。これにより、設計、予測メンテナンス、パフォーマンスの最適化が向上します。

リアルタイムのデータのキャプチャと監視:デジタル ツインは、センサーとデータ取得テクノロジーを活用してリアルタイム データをデジタル モデルにフィードバックし、デジタル ツインの精度を継続的に更新して向上させます。これは、物理エンティティの状態を監視および管理するのに役立ちます。

意思決定支援:デジタル ツインの主な目標は、意思決定支援を提供することです。デジタル ツインを使用すると、さまざまな決定が物理的なエンティティに与える影響をシミュレートできるため、意思決定者は潜在的なリスクと機会をよりよく理解できるようになります。

最適化と予測:デジタル ツインにより、実験と最適化が可能になり、物理エンティティのパフォーマンスが向上します。また、将来の傾向や問題を予測し、それに応じて意思決定を行うのにも役立ちます。

デジタル ツインは、製造、都市計画、ヘルスケア、エネルギー管理、環境監視など、幅広い用途に使用できます。デジタル ツインを利用することで、組織や個人は複雑なシステムをより深く理解して管理できるようになり、効率性の向上、コストの削減、さらにはより優れた製品やサービスの提供が可能になります。このコンセプトは、インダストリー4.0やスマートシティなどの分野で広く注目され、応用されています。

製造業がデジタルツインを活用して生産性を向上させる方法

デジタル ツインは、オブジェクト (この場合はマシン) の仮想表現です。製造業者は、これらを使用して、製造現場に移送する前に、制御された仮想環境で操作を設計、実行、テストすることができます。デジタル ツインは、加速テストを使用して機械の耐久性や部品の修理頻度を把握することで、製造業者に中期から長期にわたる運用に関するより深い洞察も提供します。

製造業界で使用されている用語である仮想コミッショニングは、デジタルツイン市場で最も急速に成長しているサブセクターの 1 つであり、高度なシミュレーションと仮想コミッショニングの分野に参入するメーカーの数はここ数年で大幅に増加しています。

メーカーは、仮想コミッショニングを使用して、物理マシンでテストする前にコミッショニングの結果をプレビューできます。これは、多くの業界が顧客に対して行っているプロセスに似ており、物理的なユニットを製造する前にオンラインで設計を提示し、顧客が提案や変更を行えるようにします。コスト削減に加えて、顧客は開発プロセスにさらに参加できるようになります。

デジタルツインのメリットはほとんどの業界よりも製造業に当てはまりますが、最先端のテクノロジーの導入に対しては保守的な姿勢が見られます。多くのメーカーは、設備や技術のアップグレードに費用がかかるため、大規模な投資をほとんど行いません。同時に、製造業は厳しい経済見通しに直面しており、原材料費は急激に上昇しています。

製造業者もデジタル変革に必要な人材の獲得に苦労しており、独自のサービスを開発するのではなく、既製のサービスを利用せざるを得ないところもある。これは短期的には賢明なことかもしれませんが、長期的にはメーカーは競争相手から目立つ必要があり、これを達成するための重要な方法の 1 つは、専用のソフトウェアを持つことです。

<<: 

>>:  人工知能を軸に:現代の情報管理の力を解き放つ

推薦する

GPT-4 は P≠NP であると結論付け、Terence Tao の予測は実現しました。世界の数学の問題を解く「ソクラテス的推論」対話97ラウンド

大規模言語モデルは実際に数学の定理の研究に使用できます。最近、Microsoft Research ...

...

再現可能なロボット合成のために化学者とロボットが理解できる汎用化学プログラミング言語

化学合成に関する文献の量は急速に増加していますが、新しいプロセスを研究室間で共有し評価するには長い時...

高度な自動運転システムの設計・開発からソフトウェアの導入まで

上記の記事では、SOA 全体のアーキテクチャ特性、実装基盤、アプリケーションの利点、開発プロセスにつ...

TiDB v5.1 体験: TiDB で機械学習モデルをトレーニングしました

序文ご存知のとおり、TiDB バージョン 5.1 では多くの新機能が追加されましたが、その 1 つが...

AI合成音声の潜在的な用途は何ですか?

AI Voice はディープラーニングを使用して、実際の人間の音声のピッチ、トーン、リズムをより正...

AI 開発者: AI 分野を選択するには?

機械学習アルゴリズムは、より広範で信頼性の高いデータをリアルタイムで提供することができ、インテリジェ...

仕事でアルゴリズムが使われることはほとんどないので、なぜアルゴリズムを学ぶ必要があるのでしょうか?

共通のデータ構造とアルゴリズム最も基本的なデータ構造とアルゴリズムは次のとおりです。ソートアルゴリズ...

ARにおける人工知能

今年3月、上海市経済情報化委員会は、同市の人工知能の革新と発展を支援する2018年特別プロジェクトの...

Facebook、AIが著作権侵害を正確に識別できるようにソースデータ拡張ライブラリを公開: 100以上の拡張方法が提供される

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

Redditのネットユーザーが議論中!コンピューティング能力とデータは本当にすべてを解決できるのでしょうか?

誰もが知っているように、コンピューティング能力とデータは非常に重要ですが、それだけで十分でしょうか?...

テキスト認識と表認識、このライブラリは直接呼び出します

PaddleOCR は、PaddlePaddle ディープラーニング フレームワークに基づいて開発さ...

ジェネレーティブAIはソフトウェア開発に3つの幻想をもたらす:高速、高品質、そしてより少ない人員

著者 |張開峰ソフトウェア業界は長い間、コスト削減と効率性向上に取り組んできました。長期にわたる開発...

ディープラーニングにおける正規化の概要(Python コード付き)

編集者注: 日々の仕事や研究において、データ サイエンティストが遭遇する最も一般的な問題の 1 つは...

Facebook の MusicGen を使用してテキストを音楽に変換する方法

翻訳者 |ブガッティレビュー | Chonglou MusicGen を使用すると、誰でもテキスト ...