AmodalSynthDrive: 自動運転のための合成アモーダル知覚データセット

AmodalSynthDrive: 自動運転のための合成アモーダル知覚データセット

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転載したものです。転載については出典元にお問い合わせください。

  • 論文リンク: https://arxiv.org/pdf/2309.06547.pdf
  • データセットリンク: http://amodalsynthdrive.cs.uni-freiburg.de

まとめ

この論文では、自動運転のための合成アモーダル知覚データセットである AmodalSynthDrive を紹介します。部分的に遮蔽されていても物体の全体を問題なく推定できる人間とは異なり、現代のコンピューター ビジョン アルゴリズムでは、この点が依然として非常に困難です。自動運転にこのタイプのモダリティフリー知覚を活用することは、適切なデータセットが不足しているため、ほとんど未開拓のままです。これらのデータセットの生成は、主に、高額な注釈コストと、遮蔽された領域に正確に注釈を付ける際の注釈者の主観によって引き起こされる干渉を軽減する必要性によって影響を受けます。これらの制限に対処するために、本論文では、合成マルチタスク非モーダル知覚データセットである AmodalSynthDrive を紹介します。このデータセットには、さまざまな交通、天候、照明条件下での 100 万を超えるオブジェクト注釈を含む、150 の運転シーケンスのマルチビュー カメラ画像、3D 境界ボックス、LIDAR データ、オドメトリが含まれています。 AmodalSynthDrive は、空間理解を強化するためのアモーダル深度推定の導入など、さまざまなアモーダルシーン理解タスクをサポートします。課題を明らかにするために、各タスクのいくつかのベースラインを評価し、パブリック ベンチマーク サーバーをセットアップします。

主な貢献

この論文の貢献は次のように要約されます。

1) 本論文では、複数のデータソースを持つ市街地運転シナリオ向けの包括的な合成アモーダル知覚データセットである AmodalSynthDrive データセットを提案します。

2) アモーダル知覚タスクのベンチマーク、すなわちアモーダルセマンティックセグメンテーション、アモーダルインスタンスセグメンテーション、アモーダルパノプティックセグメンテーションを提案する。

3) 新しい非モーダル深度推定タスクは、空間理解の向上を促進することを目的としています。私たちは、いくつかのベースラインを通じてこの新しいタスクの実現可能性を実証します。

紙の図表








要約する

知覚は自動運転車にとって非常に重要なタスクですが、現在のアプローチでは、複雑な交通シナリオを解釈するために必要な非モーダル理解がまだ欠けています。この目的のために、本論文では、自動運転のためのマルチモーダル合成知覚データセットである AmodalSynthDrive を提案します。合成画像と LiDAR ポイント クラウドを使用して、基本的なアモーダル知覚タスクのグラウンド トゥルース注釈付きデータを含む包括的なデータセットを提供するとともに、アモーダル深度推定と呼ばれる空間理解を強化するための新しいタスクも導入します。この論文では、60,000 を超える個別の画像セットが提供されており、それぞれがアモーダルインスタンスセグメンテーション、アモーダルセマンティックセグメンテーション、アモーダルパノプティックセグメンテーション、オプティカルフロー、2D および 3D 境界ボックス、アモーダル深度、鳥瞰図に関連付けられています。 AmodalSynthDrive を通じて、私たちはある種のベースラインを提供しており、この研究が動的な都市環境におけるアモーダルシーン理解の新たな研究への道を開くと信じています。

オリジナルリンク: https://mp.weixin.qq.com/s/7cXqFbMoljcs6dQOLU3SAQ

<<:  人工知能技術は建設業界をどのように変えるのでしょうか?

>>:  これは魔法ですか? ICCV 2023 の優秀な学生論文など、すべての情報を一度に追跡しましょう。 Githubには1.6Kのスターがあります

ブログ    

推薦する

機械学習の変革: 多分野にわたる問題に立ち向かい、新しい機械学習エコシステムを構築する

機械学習の手法は、生命、物理学、社会経済などの複雑なシステムにますます応用されています。特定のタスク...

フィンテック企業はリスク管理に AI をどのように活用しているのでしょうか?

[51CTO.com からのオリジナル記事] 金融テクノロジーのブームは 21 世紀以降急増してい...

...

人工知能を導入できるいくつかのアプリケーション

人工知能は長年にわたって世界を支配しており、さまざまな分野における主要な問題が AI を使用して解決...

...

人工知能はどのようにしてスマートホームを実現するのでしょうか?

リッチー・リッチは、ハーヴェイ・コミックスに登場した最も有名なキャラクターの一人です。漫画を覚えてい...

信号解析の観点から畳み込みニューラルネットワークの複雑なメカニズムを理解するにはどうすればよいでしょうか?

複雑かつ効率的なニューラル ネットワーク アーキテクチャの出現により、畳み込みニューラル ネットワー...

百度地図のデータ収集リンクの80%はAIベースになっており、旅行業界はインテリジェントにアップグレードされている

人工知能時代の地図データ制作はどのような変化を遂げるのでしょうか?7月3日、「Baidu Creat...

Keras+LSTM+CRF を使用した固有表現抽出 NER の練習

[[339715]]テキスト分割、品詞タグ付け、固有表現認識は、自然言語処理の分野では非常に基本的な...

人工知能が消去された画像を完璧な結果で再現します!

革命的な新しい人工知能プログラムは、画像の欠けている部分をすべて完璧に再現できることをすぐに納得させ...

Java から MySQL に接続するためのベストプラクティスを解読: 自分に合った方法を選択する

MySQL への接続は、Java 開発において非常に一般的なタスクの 1 つです。次のセクションでは...

テンセントのロボット犬が本物の犬の仕事を奪う!彼は楽しくゲームをしたり、歩き回ったりすることができます。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

グラフ ネットワークをより堅牢にします。 Googleは、データのラベル付けバイアスやドメイン転送を恐れないSR-GNNを提案

グラフ ニューラル ネットワーク (GNN) は、機械学習でグラフ構造データを活用するための強力なツ...

AI人材の競争は軍拡競争となっている。AIの創造性競争に賭けるAI大手の中で、勝利のポイントを獲得するのはどれだろうか?

世界中の人工知能の人材が徐々に量産モードに入りつつあります。今年6月、百度と浙江大学は、潜在的な人工...

人工知能と機械学習のための 20 の Python オープンソース プロジェクト

この記事では、Python のトップ AI および機械学習プロジェクトを更新します。 Tensorf...