データインテリジェンスのない人工知能は人工的である

データインテリジェンスのない人工知能は人工的である

良い

ロボット掃除機が動いているところを見たことがありますか?最初は楽しいのですが、掃除してほしかった汚れの部分を掃除し忘れたことに気づくと、だんだんイライラしてきます。人工知能の可能性も同様です。日常的なタスクを自動化し、大きな実用的価値をもたらすことができますが、注意しないと、同じ壁に何度も頭をぶつけたり、ケーブルの絡まりに 20 回も悩まされたりすることにほとんどの時間を費やしてしまう可能性があります。残念ながら、企業は AI から価値を引き出すことよりも苦労することに多くの時間を費やしているという証拠があります

  • 顧客の 84% は、アルゴリズムに入力するデータの品質を懸念しています。
  • 企業の 86% が、自社のデータを十分に活用できていないと主張しています。
  • 回答者の 74% は、データ環境が複雑で柔軟性が制限されていると回答しました。

ロボット掃除機と同様に、良い結果を得るための鍵は、まず片付けることです。 AI は複雑な数学と高度な計算能力を使用して結果を提供しますが、すべての複雑な数学と高価なハードウェアを動かすのはデータです。データは AI の生命線です。データ管理がうまくいかなければ、AI は良い結果を生み出すことができません。

企業は、ERP などのビジネス アプリケーションの下にある管理されたデータベースにデータが保存される従来のオンプレミス モデルから、アプリケーションがクラウドとオンプレミスの両方に配置されるモデルに移行しています。現在、データは、あまり構造化されていないソース (ソーシャル メディア、ブログ、センサーなど) から取得されています。その結果、データ環境はますます複雑化しています。この複雑さに伴い、すべての新しいデータ タイプ、形式、場所の管理に役立つ新しいツールが多数登場しています

AIを強化するために大量の新しいデータを管理する

企業がこの新しいデータの洪水に対応しようとするにつれて、後で使用するためにすべてのデータを単一のリポジトリとして保存するデータ レイクというアイデアが普及し、より多くのツールとテクノロジが生まれました。すぐに、企業の IT システムからの高度に管理されたデータと、ブログ、システム ログ、センサー、IoT デバイスなどからの包括的だが制御されていないことが多い膨大なデータ プールおよびストリームとの間に断絶が生じました。しかし、AI は、画像、ビデオ、オーディオ、テキスト データのソースだけでなく、これらすべてのデータに接続する必要があります。これらすべての接続を管理しようとすると、複数の切断され断片化されたツールが必要になります。今まで。

包括的な新しいクラウド ソリューションは、次の 3 つの重要なことを管理することで、企業全体に AI を拡張します。

  • 必要なデータはどこにあっても、どんなものであっても
  • データサイエンスチームが使用したいツールとフレームワークを使用して機械学習アルゴリズムを設計します
  • クラウドコンテナを使用して機械学習を導入し、大規模AIのエンドツーエンドのライフサイクルの迅速な導入、管理、自動化を実現します。

AI は、以下の間の調整と協力を必要とするチームの取り組みです。

  • 組織とその顧客のニーズを理解しているビジネスユーザー
  • データの場所と構造を理解しているデータエンジニア
  • データから価値を引き出す方法を理解しているデータサイエンスチーム
  • ITおよびDevOpsチームをサポートする

AI チームのすべてのメンバーは、ガバナンス、メタデータ管理、機械学習の透明性のための組み込みツールを提供するソフトウェアのサポートを受けて、最大限の生産性とスピードを実現するために連携できる必要があります。このアプローチにより、ユーザーの努力の結果が説明され、理解され、信頼できるものになることが保証されます。

AI組立ラインの構築

第二次産業革命が物理的な製造の組立ラインによって推進されたのと同様に、第四次産業革命は AI の組立ラインによって推進されます。つまり、AI の創造力は、ビジネス プロセスによってまとめられた専門の部分に分解され、大規模に自動化されることになります。このようにして、組織はデータ資産から最大限の価値を引き出し、消費者や顧客に最高のエクスペリエンスを提供することができます。

<<:  NLP タスクに最適な 6 つの Python ライブラリ

>>:  生成AIの構築には、大きなモデルだけでは不十分

ブログ    
ブログ    
ブログ    

推薦する

GANは音声を使って画像を生成できるようになった

[[432735]]この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI...

新しいディープラーニングモデルがエッジデバイスに画像セグメンテーションをもたらす方法

[51CTO.com クイック翻訳]画像セグメンテーションは、画像内のオブジェクトの境界と領域を決定...

...

顔認識の今後の発展は、どうすればより「面子を保つ」ことができるでしょうか?

顔認識技術の利用が増えるにつれ、さまざまなリスクが徐々に明らかになってきています。 CCTVの「3....

自動テストの落とし穴は何ですか?どうすれば解決できるでしょうか?

自動テストは、ソフトウェア ツールまたはハードウェア デバイスを使用して、テスト ケースの手動実行を...

...

プログラマーでなくてもわかる「機械学習」の原理

機械学習とは何ですか?一般的なシナリオから始めましょう:ある日、マンゴーを買いに行ったところ、店員が...

新しいインフラの推進により、人工知能の応用は新たな段階に入る

レポート概要新しいインフラストラクチャにより人工知能アプリケーションの実装が加速COVID-19パン...

...

「本物の人間かどうか」を検証、AIが人間を攻撃! GPT-4は99.8%の精度でチューリングテストに合格し、オンラインで助けを求めた。

あなたは実在の人物ですか? Web ページを開いて奇妙な確認コードが表示されるたびに、それをクリック...

機械学習の公平性研究は正しい方向に進んでいるのでしょうか?

機械学習における公平性に関する研究は本当に正しい方向に進んでいるのでしょうか?人工知能の発展に伴い、...

エンジニアの職が危機に:ボストン・ダイナミクスのロボット犬がフォードにエンジニアとして入社!

[[335339]]ボストン・ダイナミクスのロボット犬に新たなアイデンティティが誕生。フォードのエ...

電子商取引で人工知能を効果的に活用する10の方法

[[388530]] [51CTO.com クイック翻訳] 「人工知能」は今日では人気の用語となり、...

脳も分散強化学習を使用しているのでしょうか?ディープマインド社の新しい研究がネイチャー誌に掲載

分散強化学習は、囲碁やスタークラフトなどのゲームでインテリジェントエージェントが使用する手法ですが、...