NLP タスクに最適な 6 つの Python ライブラリ

NLP タスクに最適な 6 つの Python ライブラリ

この記事では、自然言語処理タスクに最適な 6 つの Python ライブラリを紹介します。初心者でも経験豊富な開発者でも、NLP 分野での実践的な能力を向上させるためのインスピレーションと助けを得ることができます。

1. ピュンルピル

Pynlpir は優れた Python 中国語自然言語処理ライブラリです。単語の分割、品詞のタグ付け、固有表現の認識など、さまざまな機能を提供します。 Pynlpir のインストールと使用は比較的簡単で、pip パッケージ マネージャーを通じてインストールできます。 Pynlpir ライブラリをインポートすると、中国語テキスト処理用の関連関数を Python コード内で簡単に呼び出すことができます。

以下は、Pynlpir を使用した中国語テキスト分割のサンプル コードです。

 import pynlpir # 输入文本进行分词text = "这是一段中文文本,我们使用pynlpir进行分词" result = pynlpir.segment(text) print(result)

実行結果は次のとおりです。

 [('这是', 'r'), ('一', 'm'), ('段', 'q'), ('中文', 'nz'), ('文本', 'n'), (',', 'w'), ('我们', 'r'), ('使用', 'v'), ('pynlpir', 'nz'), ('进行', 'v'), ('分词', 'n')]

2. 多言語話者

Polyglot は、さまざまな自然言語処理 (NLP) 操作を実行するためのオープンソースの Python ライブラリです。 Numpy をベースにしており、優れたパフォーマンスと多数の特殊なコマンドを備えています。

Polyglot が NLP で非常に便利な理由は、幅広い多言語アプリケーションをサポートしているためです。ドキュメントによると、Polyglot は 165 言語での単語分割、196 言語での言語検出、16 言語での品詞タグ付けをサポートしています。

以下は、Polyglot を使用して中国語の単語分割を実行するためのサンプル コードです。まず、Polyglot の Text クラスをインポートし、次に Text オブジェクトを作成して中国語のテキストを渡します。 Text オブジェクトの words プロパティにアクセスすることで、テキストの単語分割結果を取得できます。最後に、トークン化の結果を反復処理し、各トークンを出力します。

 from polyglot.text import Text text = Text("我喜欢使用Polyglot进行中文文本处理。") tokens = text.words for token in tokens: print(token)

出力は次のようになります。

我喜欢使用Polyglot进行中文文本处理。

3. パターン

Pattern は、自然言語処理 (NLP)、データ マイニング、ネットワーク分析、機械学習、視覚化などのタスクのための強力な Python ライブラリです。開発者がテキスト データを処理し、関連する分析を実行できるようにするための一連のモジュールとツールを提供します。

以下は、パターン ライブラリを使用した簡単なテキスト処理のサンプル コードです。

 from pattern.en import sentiment, pluralize # 文本情感分析text = "I love Pattern library!" sentiment_score = sentiment(text) print(f"Sentiment Score: {sentiment_score}") # 复数形式转换word = "apple" plural_word = pluralize(word) print(f"Singular: {word}") print(f"Plural: {plural_word}")

出力は次のようになります。

 Sentiment Score: (0.5, 0.6) Singular: apple Plural: apples

4. サイキットラーン

scikit-learn は、もともと SciPy ライブラリのサードパーティ拡張機能として登場した Python ライブラリです。現在は独立した Python ライブラリとなり、Github でホストされています。 Spotify のような大企業で広く使用されており、使用すると多くのメリットがあります。まず、スパム検出、画像認識、予測、顧客セグメンテーションなどのタスクなど、従来の機械学習アルゴリズムに非常に役立ちます。

さらに、scikit-learn はテキスト分類などの自然言語処理 (NLP) タスクにも使用できます。テキスト分類は教師あり学習における最も重要なタスクの 1 つであり、scikit-learn はテキスト分類をサポートする豊富な機能を提供します。もう 1 つの重要なアプリケーション シナリオは感情分析です。感情分析では、データ分析を使用して意見や感情を分析します。Scikit-learn は感情分析に役立ちます。

ここでは、scikit-learn を使用して中国語のテキスト特徴値を抽出します。コードは次のとおりです。

 from sklearn.feature_extraction.text import CountVectorizer def count_chinese_demo(): data = ["我爱吃火锅", "我爱喝奶茶"] # 1.实例化一个转换器类transfer = CountVectorizer() # 2.调用fit_transform() data_new = transfer.fit_transform(data) # CountVectorizer()不可以设置sparse矩阵# toarray()方法可以将sparse矩阵转成二维数组print("data_new:\n", data_new.toarray()) print("特征值名称:\n", transfer.get_feature_names_out()) if __name__ == "__main__": count_chinese_demo()

出力:

 data_new: [[1 0] [0 1]]特征值名称: ['我爱吃火锅' '我爱喝奶茶']

5. テキストブロブ

TextBlob はテキスト データを処理するための Python ライブラリです。品詞タグ付け、名詞句抽出、感情分析、テキスト翻訳、分類などの一般的な NLP タスクを詳しく調べるために使用できるシンプルな API を提供します。

以下は、TextBlob を使用して感情分析を実行し、結果を出力するサンプル コードです。

 from textblob import TextBlob text = "I love this product! It's amazing." blob = TextBlob(text) sentiment = blob.sentiment.polarity if sentiment > 0: print("Positive sentiment") elif sentiment < 0: print("Negative sentiment") else: print("Neutral sentiment")

6. パイトーチ

PyTorch は、Facebook の人工知能研究チームによって 2016 年に作成されたオープンソース ライブラリです。このライブラリの名前は、Lua プログラミング言語で書かれたディープラーニング フレームワークである Torch に由来しています。 Pytorch は多くのタスクを実行でき、特に NLP やコンピューター ビジョンなどのディープラーニング アプリケーションに適しています。ライブラリを拡張するために使用できる強力な API と、自然言語処理ツールキットを備えています。

<<: 

>>:  データインテリジェンスのない人工知能は人工的である

ブログ    
ブログ    

推薦する

Pythonで完全な異常検出アルゴリズムをゼロから実装する

確率を用いた異常検出アルゴリズム異常検出は、外れ値分析の統計タスクとして扱うことができます。 しかし...

...

笑顔は73年にわたる:ディープフェイクがイスラエル建国戦争の古い写真を「復活」させる

[[434314]]ディープフェイクを使って古い写真をアニメ化し、殉教者を追悼するのは良いことだが、...

...

防衛とセキュリティの再定義に貢献するAIスタートアップ

人工知能の誕生は第二次世界大戦中に連合国が暗号解読機を開発し、それがナチスドイツのエニグマ暗号を解読...

ユーモアを理解し、皮肉のスキルに溢れた、マスクのChatGPTのライバルがついにチャットのスクリーンショットを公開

最近、マスク氏の伝記「イーロン・マスク:伝記」が国内外でベストセラーとなった。この本には、マスク氏の...

...

大規模モデル幻覚率ランキング:GPT-4は3%と最も低いが、Google Palmは最大27.2%

人工知能は急速に発展していますが、問題も頻繁に発生しています。 OpenAI の新しい GPT ビジ...

...

マッキンゼーの「2020年人工知能の現状」レポート:AIは企業の収益成長に大きく貢献した

[[354345]]マッキンゼーの最新の AI 調査レポート「2020 年の AI の現状」によると...

人工知能はこれら12の分野に混乱をもたらし、ホワイトカラー労働者も職を失うことになるだろう

[[192649]]人工知能 (AI) は、今日最もエキサイティングで将来有望な最先端技術の 1 つ...

...

今後10年の予測レポート:高齢化が進み、幼児市場が縮小、AIが様々な製品に浸透

IDCはこのほど、2019年および今後10年間の中国の情報通信分野と技術応用に関するトップ10予測を...

エッジコンピューティングとエッジ AI とは何ですか?この2つの違いは何でしょうか?

AIチップはクラウドとエッジに分かれています。クラウドチップは高いパフォーマンスが求められますが、...

...