12月29日、大規模言語モデル(LLM)は、単純な自然言語処理から、テキスト、オーディオ、ビデオなどのマルチモーダル分野にまでその範囲を拡大しており、その鍵の1つがビデオグラウンディング(VG)です。 VG タスクの目的は、与えられたクエリ (文章の説明) に基づいて、対象のビデオ セグメントの開始時間と終了時間を特定することです。主な課題は、時間的な境界の位置決めの精度にあります。 清華大学の研究チームは最近、「 LLM4VG 」ベンチマークを発表しました。これは、VGタスクにおけるLLMのパフォーマンスを評価するために特別に設計されたフレームワークです。 このベンチマークでは、2 つの主な戦略が検討されています。1 つ目は、テキスト ビデオ データセット (VidLLM) で直接トレーニングされたビデオ LLM を使用すること、2 つ目は、従来の LLM と事前トレーニング済みのビジョン モデルを組み合わせることです。 最初の戦略では、VidLLM はビデオ コンテンツと VG タスクの指示を直接処理し、テキストからビデオへのトレーニングに基づいて予測を出力します。 2 番目の戦略はより複雑で、LLM と視覚的記述モデルが関係します。これらのモデルは、慎重に設計されたプロンプトを介して VG タスクの指示と統合されたビデオ コンテンツのテキスト説明を生成します。 これらのプロンプトは、VG の指示と与えられた視覚的説明を効果的に組み合わせるように特別に設計されており、これにより LLM はタスクに関するビデオ コンテンツを処理して理解できるようになります。 VidLLM は、ビデオ コンテンツで直接トレーニングされているにもかかわらず、満足のいく VG パフォーマンスを達成するには依然として大きなギャップがあることが観察されています。この発見は、パフォーマンスを向上させるために、より時間的に関連のあるビデオタスクをトレーニングに組み込む必要があることを浮き彫りにしています。 2 番目の戦略は VidLLM よりも優れており、将来の研究の有望な方向性を示しています。この戦略は主に視覚モデルの制限とプロンプトワードの設計によって制限されるため、詳細かつ正確なビデオの説明を生成できるようになると、より洗練されたグラフィカル モデルによって LLM の VG パフォーマンスが大幅に向上します。 要約すると、この研究は、VG タスクへの LLM の適用に関する画期的な評価を提供し、モデルのトレーニングとキューの設計においてより洗練された方法の必要性を浮き彫りにしています。 IT Home は論文の参照アドレスを添付しています: https://arxiv.org/pdf/2312.14206.pdf |
>>: NVIDIA: ジェネレーティブ AI はネットワーク セキュリティを効果的に支援し、脆弱性を発見してハッカーの攻撃を予測することができ、実際の人間よりも 20% 以上効率的です。
Microsoft は、テストにおいてセキュリティ脆弱性と非セキュリティ脆弱性を 99% の精度で...
機械学習とデータサイエンスは複雑で相互に関連した概念です。技術トレンドに遅れないようにするには、知識...
近年、あらゆる分野でインターネット+が採用され、クラウドコンピューティングやビッグデータなどの技術を...
[[415316]]海外メディアの報道によると、オーストラリアの裁判所は、特許出願において人工知能...
州や自治体が新型コロナウイルスから国民を守るために制限措置を講じてきたため、ほぼ2年間、あらゆる種類...
[[416801]]ビッグデータダイジェスト制作出典: Wired 8月8日の夜、第32回夏季オリ...
「次世代のロボットは『人間と共存する』ものになるだろう。中国がこのチャンスをつかめば、ロボットイノ...
編集者注: この記事は、WeChat パブリック アカウント「Big Data Digest」(ID...
最後に家族は喜びました。今では、ビデオの主人公をたった 1 枚の写真に置き換えることができ、その効果...
オープンソースの AI ディープラーニングを適用して、顔の表情の特徴に基づいて画像のキャプションを生...