今日のデータとAI市場における不確実性にどう対処するか

今日のデータとAI市場における不確実性にどう対処するか

データ分析と人工知能 (AI) 市場に関するニュースをフォローしている人なら誰でも、過去数年間で多くの変化があったことを知っています。オープンソース言語の台頭により、SAS などの基礎的な分析テクノロジーに圧力がかかっています。スタートアップ企業は、持続可能なビジネスモデルを実現できないまま、資金を使い果たし、痛い教訓を学んできた。もちろん、生成 AI の急速な導入により、競争に遅れを取らないためにできる限りのことをしているかどうか、誰もが疑問を抱いています。つまり、データ分析においてこれほど不確実性が高まったことはかつてないほどです。

したがって、長期的な視点で分析パートナーシップを構築することがこれまで以上に重要になります。選択したテクノロジーは、時の試練に耐えられるでしょうか? 実績のある企業を選択していますか? 最大規模でのコストはどの程度になるでしょうか? データ使用量の増加に伴ってチームはどのように進化すべきでしょうか? 状況が厳しくなったとき。このパートナーは私を助けてくれるでしょうか? これらはパートナーの決定を分析する際に常に問うべき重要な質問ですが、今日の絶えず変化する環境では、先を見据えることが特に重要です。

データとAIテクノロジーに注目すべき点

まずは技術的な面から始めましょう。市場では大きな変化が起きており、データ配信ワークフローにベンダーが増えるとリスクも増大します。組織は、あらゆる範囲をカバーし、最初から最後まで仕事を完了できるデータと AI テクノロジを探す必要があります。テクノロジーに関しては、組織は以下を含むすべてを提供する企業を探す必要があります。

● データ準備

● 抽出、変換、ロード (ETL)

● 自動化、自動予測、自動特徴エンジニアリング

● 生成AIの微調整

● モデル開発

● ワークロードオーケストレーション

● データの視覚化

● 多言語分析(Python、R、SQL、SASを含む)

さらに、これらすべてのツールが同じテクノロジー パートナーによって提供されると、より自然かつエレガントに連携する可能性が高くなります。つまり、時間の半分をツールを組み合わせることに費やす必要がなくなり、データ ワーカーが複数の役割を担う場合でも、ワークフローを自分で組み合わせるためにツールからツールへと切り替える必要がなくなります。

最も重要なのは、これらすべてを実現し、合理化されたワークフローで提供し、さらに、専門的なデータ スキルを持つ人と持たない人の両方をサポートする方法で提供できるソフトウェア パートナーです。こうすることで、データチームがすべてを行う必要がなくなります。ノーコードおよびローコード ツールを使用すると、データ チーム以外の関係者が、データ チームの作業の 80% を占める小さいながらも重要なタスクを処理できるようになり、データ チームは本格的なデータ サイエンスを必要とする最も困難なプロジェクトに取り組むことができます。

理想的には、同じパートナーがサービス パッケージ全体を提供できる必要があります。エンドツーエンドのシームレスな統合、ノーコードからコードファーストまで。これらは、摩擦のない AI と強力なテクノロジー パートナーの特徴です。

データとAIのビジネスアプローチで注目すべき点

しかし、テクノロジーは戦いの半分にしか過ぎません。多くの組織は優れたテクノロジーを有していますが、安定性に欠けています。最も重要なのは、ビジネス面では、リーダーや組織がデータ分析と AI のニーズを満たすパートナーを探す際に、実績と安定性のあるパートナーを優先する必要があることです。

今日の最先端の組織にとって、データはすべてです。不安定なパートナーによって引き起こされる混乱や誤解は、短期的および長期的な成功の両方を危険にさらす許容できない遅延です。データ ソリューションを長期にわたって使用したい場合は、データ ベンダーが長期にわたって使用できることを確認してください。

さらに、深い専門知識と世界クラスのクライアント サービスの実績を持つ組織と提携することで、日々の不確実性を最小限に抑えることができます。パートナーは単なるサプライヤーではなく、パートナーであるべきです。物事が困難になったとき、助けてくれる人が近くにいるといいのですが。

最後に、市場の不確実性は、誰もが価格と価値を懸念することを意味します。顧客向けに特別に設計されたビジネス モデルとライセンス システムを持つパートナーを優先します。

<<: 

>>: 

ブログ    
ブログ    
ブログ    

推薦する

中国のAI麻雀が新たな高みに到達!テンセントの「Jueyi」が本物のプロプレイヤーを破り新記録を樹立

中国のAIは予想通り、麻雀のプレイでは「楽々と」トップに立った。テンセントの最新ニュースによると、同...

...

南京科技大学とオックスフォード大学は、1行のコードでゼロショット学習法の効果を大幅に向上させるプラグアンドプレイ分類モジュールを提案した。

ゼロショット学習は、トレーニングプロセス中に出現しなかったカテゴリの分類に重点を置いています。意味記...

OpenAIの初の開発者会議が事前に「公開」され、新しいChatGPTプロトタイプGizmoが公開された

今年9月、OpenAIは初の開発者会議「OpenAI DevDay」を正式に発表した。その時、Ope...

...

2021 年に注目すべき 5 つのロボティック プロセス オートメーション (RPA) トレンド

過去2、3年で、中国におけるロボティック・プロセス・オートメーション(RPA)の応用は急速に拡大しま...

...

ヘルスケアにおける6つの新たなテクノロジートレンド

ヘルスケア業界におけるテクノロジーの浸透は、この分野の専門家のほぼすべての業務に影響を及ぼしています...

北京交通大学が中国初の大規模交通モデルTransGPTのソースを公開、商用利用は無料

7月28日、北京交通大学は中国コンピュータ学会のインテリジェント交通部門および祖智多模型公司と協力し...

トレンドにおける危険とチャンス: 生成 AI の黄金期をどう捉えるか?

ChatGPTは今年9月末に音声チャットと画像認識機能を追加しました。テキスト駆動型と比較して、C...

動的プログラミングアルゴリズムのルーチンをマスターするにはどうすればいいですか?

[[358211]] DP と呼ばれる動的プログラミングは、非常に洗練された複雑なアルゴリズムとい...

アイティ族テクニカルクリニック第6回

【51CTO.comオリジナル記事】 [51CTO オリジナル記事、パートナーサイトに転載する場合は...

強化学習は2020年にブレークスルーを達成するでしょうか?

強化学習は AI/ML の目標を達成するために不可欠ですが、克服すべきハードルがまだいくつかあります...

Byteチームは、認知生成リストSoTAを理解するためのマルチモーダルLLMであるLynxモデルを提案しました。

GPT4 などの現在の大規模言語モデル (LLM) は、画像が与えられた場合にオープンエンドの指示...

機械学習とAIが飲食業界に与える影響

[[354952]]一般的に、食品業界について考えるとき、私たちはおそらく顧客サービスや食品配達のギ...