Stable Diffusion 3 の技術レポートがリークされ、Sora アーキテクチャがまた大きな貢献を果たしました。 RAWフォトサークルのオープンソースはMidjourneyやDALL·E 3に勝る?

Stable Diffusion 3 の技術レポートがリークされ、Sora アーキテクチャがまた大きな貢献を果たしました。 RAWフォトサークルのオープンソースはMidjourneyやDALL·E 3に勝る?

Stability AI は、Stable Diffusion 3 のリリースに続いて、本日詳細な技術レポートを発表しました。

この論文では、Stable Diffusion 3 のコア技術である改良された Diffusion モデルと新しい DiT ベースの Wenshengtu アーキテクチャを詳細に分析します。

報告先住所:

https://stabilityai-public-packages.s3.us-west-2.amazonaws.com/Stable+Diffusion+3+Paper.pdf

人間による評価テストでは、フォント デザインとプロンプトへの正確な応答の点で、Stable Diffusion 3 が DALL·E 3、Midjourney v6、Ideogram v1 を上回りました。

Stability AI が新たに開発した Multimodal Diffused Transformer (MMDiT) アーキテクチャは、画像と言語の表現に独立した重みセットを使用するため、SD 3 の以前のバージョンと比較して、テキスト理解とスペル機能が大幅に向上します。

パフォーマンス評価

技術レポートでは、人間のフィードバックに基づいて、多数のオープンソース モデル SDXL、SDXL Turbo、Stable Cascade、Playground v2.5、Pixart-α、およびクローズド ソース モデル DALL·E 3、Midjourney v6、Ideogram v1 と SD 3 の詳細な比較評価を実施しています。

評価者は、与えられたプロンプトとの一貫性、テキストの明瞭さ、画像の全体的な美しさに基づいて、各モデルから最適な出力を選択しました。

テスト結果によると、Stable Diffusion 3 は、プロンプトに従う正確さ、テキストの明確な表示、画像の視覚的な美しさのいずれの点でも、画像生成技術の現在の最先端技術に達しているか、それを上回っています。

完全に最適化されていない SD 3 モデルには 8B のパラメーターがあり、24GB のビデオ メモリを搭載した RTX 4090 コンシューマー GPU で実行され、50 のサンプリング ステップを使用して 1024x1024 解像度の画像を生成するのに 34 秒かかります。

さらに、Stable Diffusion 3 は、発売時に 8 億から 80 億までのパラメータを持つ複数のバージョンで利用可能になり、使用するためのハードウェアのしきい値がさらに下がります。

建築の詳細が明らかに

テキストから画像を生成するプロセスでは、モデルはテキストと画像という 2 つの異なる種類の情報を同時に処理する必要があります。そこで著者らはこの新しいフレームワークを MMDiT と呼んでいます。

テキストから画像を生成するプロセスでは、モデルはテキストと画像という 2 種類の異なる情報を処理する必要があります。そのため、著者らはこの新しい技術を MMDiT (Multimodal Diffusion Transformer の略) と呼んでいます。

Stable Diffusion の以前のバージョンと同様に、SD 3 は事前トレーニング済みのモデルを使用して、テキストや画像に適した表現を抽出します。

具体的には、テキスト情報の処理には 3 つの異なるテキスト エンコーダー (2 つの CLIP モデルと 1 つの T5) を使用し、画像情報の処理にはより高度なオートエンコーダー モデルを使用しました。

SD 3 のアーキテクチャは、Diffusion Transformer (DiT) に基づいて構築されています。テキスト情報と画像情報の違いにより、SD 3 では 2 種類の情報それぞれに独立した重みを設定します。

この設計は、各情報タイプに 2 つの独立した Transformer を装備することと同等ですが、アテンション メカニズムを実行すると、2 つの情報タイプのデータ シーケンスがマージされ、相互参照と統合を維持しながら、それぞれのフィールドで独立して動作できるようになります。

この独自のアーキテクチャにより、画像とテキストの情報が相互に流れ、相互作用できるようになり、生成された結果のコンテンツの全体的な理解と視覚的表現が向上します。

さらに、このアーキテクチャは、将来、ビデオを含む他のモダリティに簡単に拡張できます。

SD 3 のプロンプトへの追従性が向上したおかげで、モデルはさまざまなテーマや機能に焦点を当てた画像を正確に生成できると同時に、画像スタイルにおける極めて高い柔軟性も維持できるようになりました。

再加重による整流フローの改善

新しい Diffusion Transformer アーキテクチャに加えて、SD 3 では Diffusion モデルにも大幅な改善が加えられました。

SD 3 は、直線軌道に沿ってトレーニング データとノイズを接続する Rectified Flow (RF) 戦略を採用しています。

このアプローチにより、モデルの推論パスがより直接的になるため、サンプル生成をより少ないステップで完了できます。

著者らは、トレーニング プロセスに革新的な軌道サンプリング スキームを導入し、特に予測タスクがより困難になる軌道の中間部分の重みを増やしています。

他の 60 種類の拡散軌跡 (LDM、EDM、ADM など) と比較した結果、以前の RF 方式はサンプリング ステップが少ない場合はパフォーマンスが優れているものの、サンプリング ステップの数が増えるとパフォーマンスが徐々に低下することが分かりました。

この状況を回避するために、著者が提案した重み付け RF 法は、モデルのパフォーマンスを継続的に向上させることができます。

RFトランスモデルの拡張

Stability AI は、15 個のモジュール、4 億 5000 万個のパラメータから 38 個のモジュール、80 億個のパラメータまで、さまざまなサイズの複数のモデルをトレーニングし、モデル サイズとトレーニング ステップの両方で検証損失をスムーズに削減できることを発見しました。

これがモデル出力の大幅な改善を意味するかどうかを検証するために、研究者らは自動画像配置メトリックと人間の嗜好評価も評価しました。

結果は、これらの評価メトリックが検証損失と強く相関していることを示しており、検証損失がモデルの全体的なパフォーマンスの有効な指標であることを示しています。

さらに、このスケーリングの傾向はまだ飽和点に達していないため、将来的にモデルのパフォーマンスをさらに向上させることができると楽観視しています。

著者らは、さまざまなパラメータ数を使用して、256×256ピクセルの解像度と4096のバッチサイズで50万ステップにわたってモデルをトレーニングしました。

上の図は、より大きなモデルをより長い時間トレーニングした場合のサンプル品質への影響を示しています。

上記の表は GenEval の結果を示しています。著者らが提案したトレーニング方法を使用し、トレーニング画像の解像度を上げると、最大のモデルはほとんどのカテゴリで優れたパフォーマンスを発揮し、総合スコアで DALL·E 3 を上回りました。

著者によるさまざまなアーキテクチャ モデルのテスト比較によると、MMDiT のパフォーマンスは DiT、Cross DiT、UViT、MM-DiT を上回り、非常に優れています。

柔軟なテキストエンコーダ

推論中にメモリを大量に消費する 4.7B パラメータの T5 テキスト エンコーダーを削除することで、パフォーマンスの低下を最小限に抑えながら SD 3 のメモリ要件が大幅に削減されます。

このテキスト エンコーダーを削除しても、画像の見た目の美しさには影響がなく (T5 なしで 50% の勝率)、テキストを正確に追従する能力はわずかに低下しただけです (46% の勝率)。

ただし、テキスト生成において SD 3 の機能を最大限に活用するには、T5 エンコーダーの使用を推奨します。

著者は、それがなければ、生成されたテキストの組版のパフォーマンスがさらに低下することを発見したためです (勝率は 38%)。

ネットユーザーの間で熱い議論

ネットユーザーたちは、ユーザーを常にからかっておきながら使用を許可しない Stability AI の行動にいらだちを感じており、できるだけ早くオンラインでリリースして誰でも使用できるようにしてほしいと訴えている。

ネットユーザーたちは、技術的な応用を見た後、生写真界はオープンソースがクローズドソースを圧倒する最初の道になるようだ、と述べた。

<<:  AI アバターはブランドエンゲージメントを深める鍵となるのでしょうか?

>>: 

推薦する

シンプルな人工ニューラル ネットワークをゼロから構築する: 1 つの隠れ層

[51CTO.com クイック翻訳] 前回の記事「人工ニューラルネットワークをゼロから構築する(パー...

...

「中国版GPT-3」が登場。算術演算が可能で、紅楼夢を書き続けることができる。64枚のV100画像で3週間トレーニングされた。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

オックスフォード大学の科学人気記事、数分でわかる「機械学習とは何か」

[[389147]]人間は経験を通して学び、成長する能力を持っている学習能力と経験を通じてタスクを...

多言語AI分析は、顧客体験の可能性を解き放ち、ビジネスの成長を促す鍵となる

テキスト分析は、顧客が話す言語に関係なく、顧客の意見のあらゆる例を発見して注釈を付けることができる強...

IDC: 生成型AIへの世界的な支出は2027年に1,430億ドルに達する

IDC は最近、世界中の企業による生成 AI サービス、ソフトウェア、インフラストラクチャへの支出が...

...

AIがコンテンツマーケティングを進化させる方法

デジタル メディアはほぼすべての人の日常生活に浸透し、私たちのあらゆる活動に永続的な影響を及ぼしてい...

50社以上のWeb3メタバース企業にインタビューした結果、私たちは次のことを学びました。

過去 1 年間で、50 社を超える Web 3 メタバース企業にインタビューを行ってきました。今日の...

...

業界初のAIリアルタイムステルス技術、ステルスの超能力を手に入れるために快手へ

先ほど終わった快手千夜一夜パーティで、ディルラバ・ディルムラトの突然の登場に、司会者と観客から「かっ...

マルチエージェントシステムにおける協力:MASにおける不確実性、社会的メカニズム、強化学習の探究

マルチエージェント システム (MAS) は、共通の目標または個別の目標を達成するために相互に対話お...

製造および自動化アプリケーション向けの人工知能技術の選び方

人工知能 (AI) の定義は、産業オートメーションにおける生産と、研究室外の日常生活では大きく異なり...

WeBank AI 主任科学者 NeurIPS の論文で「最新のニューラル ネットワーク盗難防止技術」が明らかに

保護されていないニューラル ネットワークは、誰でも運転できるロックされていない車のようなものです。...

蘇州の路上には自動運転バスが走っている。これは試験運行ではない。市民は無料で乗車できる。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...