あらゆる種類の機械学習 (ML) の問題に取り組む場合、選択できるさまざまなアルゴリズムがあります。機械学習の分野では、すべての問題を完全に解決できる ML アルゴリズムは存在しないというコンセンサスがあります。さまざまな ML アルゴリズムのパフォーマンスは、データのサイズと構造に大きく依存します。したがって、多くの試行錯誤を通じてアルゴリズムを直接テストしない限り、適切なアルゴリズムを選択することは難しい問題になることがよくあります。
ただし、各 ML アルゴリズムには、ガイドとして使用できる長所と短所がいくつかあります。あるアルゴリズムが他のアルゴリズムより常に優れているとは限りませんが、各アルゴリズムには、適切なアルゴリズムをすばやく選択し、ハイパーパラメータを調整するためのガイドとして使用できるいくつかの特性があります。回帰問題に対するよく知られた ML アルゴリズムをいくつか紹介し、その長所と短所に基づいて使用するためのガイドラインを設定します。この投稿は、回帰問題に最適な ML アルゴリズムを選択するのに役立ちます。 線形回帰と多項式回帰 線形回帰 簡単なケースから始めましょう。単変量線形回帰は、直線などの線形モデルを使用して、単一の入力独立変数 (特徴変数) と出力従属変数の関係をモデル化するために使用される手法です。より一般的なケースは多変量線形和であり、複数の独立した入力変数 (特徴変数) と出力従属変数の関係についてモデルが作成されます。出力は入力変数の線形結合であるため、モデルは線形のままです。 3 番目に一般的なケースは、多項式回帰モデルと呼ばれます。これは、指数変数やコサインなどの特徴変数の非線形組み合わせになりますが、これにはデータと出力の関係を知ることが必要です。回帰モデルは、確率的勾配降下法 (SGD) を使用してトレーニングできます。 アドバンテージ:
欠点:
ニューラルネットワーク ニューラル ネットワークは、ニューロンと呼ばれる相互接続されたノードのグループで構成されます。データ内の入力特徴変数は、多変量線形結合としてこれらのニューロンに渡され、各特徴変数に掛けられる値は重みと呼ばれます。次に、この線形結合に非線形性を適用し、ニューラル ネットワークが複雑な非線形関係をモデル化できるようにします。ニューラル ネットワークには複数の層があり、1 つの層の出力は同じ方法で次の層に渡されます。出力では通常、非線形性は適用されません。ニューラル ネットワークは、確率的勾配降下法 (SGD) とバックプロパゲーション アルゴリズム (両方とも上の GIF に表示) を使用してトレーニングされます。 アドバンテージ:
欠点:
回帰木とランダムフォレスト ランダムフォレスト 基本から始めましょう。決定木は、ツリーのブランチをトラバースし、ノードで行われた決定に基づいて次のブランチを選択する直感的なモデルです。ツリー誘導は、一連のトレーニング インスタンスを入力として受け取り、分割に最適な属性を決定し、データセットを分割し、結果として得られる分割データセットに対して、すべてのトレーニング インスタンスが分類されるまでこれを繰り返すタスクです。ツリーを構築する際の目標は、可能な限り純粋な子ノードを作成する属性に基づいて分割することです。これにより、データセット内のすべてのインスタンスを分類するために必要な分割の数を最小限に抑えることができます。純度は情報ゲインの概念によって測定されます。これは、以前に見たことのないインスタンスを適切に分類するために、そのインスタンスについてどれだけ知る必要があるかに関するものです。実際には、エントロピー、つまり、現在のデータセット パーティションが特定の属性に基づいてさらにパーティション分割された場合に、現在のデータセット パーティションの単一のインスタンスを分類するために必要な情報量を比較することによって、単一のインスタンスが分類されます。 ランダムフォレストは、決定木の集合にすぎません。入力ベクトルは複数の決定木を介して実行されます。回帰の場合、すべてのツリーの出力値が平均化され、分類の場合、投票方式を使用して最終クラスが決定されます。 アドバンテージ:
欠点:
*** この記事を楽しんでいただき、何か新しくて役に立つことを学んでいただければ幸いです。 |
>>: Meituan はどのようにしてディープラーニングに基づくインテリジェントな画像レビューを実現するのでしょうか?
【51CTO.comオリジナル記事】 GPT-3は昨年5月にリリースされました。 OpenAI...
研究者らは、軍用無人車両に対する中間者攻撃を検出できる人工知能アルゴリズムを開発した。ロボットオペレ...
Mengniu、Jiaoxia、Qingfeng、Oshiman、Wufangzhai、Santon...
自然言語処理とは、自然言語を使用して人間とコンピューターが効果的にコミュニケーションするためのさまざ...
AI 音声クローニングは、音声の固有の特徴を捉えて正確に複製する技術です。この技術により、既存のサウ...
教育省は最近、「高等教育機関向け人工知能イノベーション計画」を発表し、「人工知能分野における人材育成...
人工知能とデータサイエンスは、2023 年に最もエキサイティングで影響力のある 2 つのテクノロジー...
規制は消費者と市場を保護するために設けられていますが、多くの場合、規制は複雑であり、遵守にはコストが...
この脆弱性は、広範囲にわたる暗号分析を行った3つの大学とマイクロソフトの研究者によって発見されたが、...
12月7日、CreditEaseの代表者が「スマートテクノロジーカンファレンス」に出席し、IT運用の...
昨日、私たちは地球の最大の課題に取り組む絶好の機会であるアースデーを祝いました。 COVID-19パ...