戦争の太鼓はすでに鳴り響いています。人工知能に関して、あなたはどちらの陣営に属しますか?

戦争の太鼓はすでに鳴り響いています。人工知能に関して、あなたはどちらの陣営に属しますか?

[[240281]]

人工知能が将来の技術の方向性であることは誰もが知っていますが、AIの学習に対する姿勢は人それぞれです。最近、ある写真がTwitterで話題となり、ヤン・ルカン氏やMITのCSAILなど多くの著名人がリポストした。この図は、ディープラーニングの学習者を 4 つのタイプに分類し、4 つのタイプの学習者の特徴を説明しています。読者は自分がCann YeLunなのか、LeiLei Fiなのかを確認できます。

No.1 リラジ・サヴァル

Neta 出身の有名な YouTube 機械学習ブロガー、Siraj Raval。あなたは彼のことをよく知らないかもしれません。彼は「AI を解決し、それを人類の利益のために使う」ことに尽力しています。彼はまた、「コンピューター サイエンスのビル ナイ」、「コードのカニエ」、「ニューラル ネットワークのビヨンセ」、「学習のボルト」、「機械学習のイエス」などとしても知られています...

特徴:

  • 「ハハハ、ディープラーニングには実は数学は必要ないんだよ」
  • Siraj Science (sirajology) のファン
  • わからない場合は、Github Deep Learning Modelに直接アクセスしてください。
  • 理論よりも応用が重要
  • 数十億ドル規模のスタートアップにつながる新しい大きなアイデアを持っている
  • Pythonが勝利

No.2 カン・イェルン

Yann LeCun 氏は、Neta のディープラーニングの先駆者であり、Facebook のトップ人工知能科学者であり、ニューヨーク大学教授です。 LeCun 自身も、Twitter でこの写真をリツイートしました: 4 種類の (若い) ディープラーナー。皆さん、若すぎます...

  • 現在、学術分野で修士号/博士号取得を目指して勉強中
  • GANに関する別の論文が来週発表される予定
  • Google Brain、OpenAI、FAIR、DeepMind などの業界のラボで働くことに熱心です。
  • PyTorchは好きですが、TensorFlowを使わざるを得ません
  • CNNは革命的な創造物だと思う
  • データのクリーニングが嫌い
  • チームでGPUを所有する

No.3 ナンドリュー・アン

ディープラーニングの先駆者であり、スタンフォード大学の教授、そして百度の元トップ科学者であるアンドリュー・ン氏。 Andrew Ng 氏は人工知能教育に取り組んでいます。また、Deeplearning.ai、Landing.ai、AI Fund という 3 つの企業の創設者でもあります。

  • ディープラーニングを新たな電力として提唱
  • Nvidia GTX 1080TIを披露しましょう
  • 自由時間に自動運転車を作りたい
  • Andrew Ngのコースをすべて受講しました
  • 莫大な収入を求めて学界を離れ産業界へ
  • GCP、IBM Watson、Azure、AWS、flyodhub、paperspace のアカウントを持っている

No.4 レイレイフィ

スタンフォード大学教授、ImageNet創始者、Google Cloud機械学習および人工知能のトップ科学者であるNeta Liは、人工知能分野で最も優れた女性科学者です。

  • 私は R が好きですが、チームのほとんどは Python を使用しています。
  • コンピュータサイエンス/統計学/数学/AIの博士号
  • 論文ではバックプロパゲーションを手動で実行し、それをMatlabのコードに書き込むことができます。
  • ディープラーニングの数学を無視する人は本当のデータサイエンティストではないと思う
  • 年間99回の会議に出席する
  • この論文はNIPSに受理された。

もちろん、四天王は通常 5 人います (間違い)。熱心なネットユーザーらは、他にもいくつかのタイプが存在することを指摘した。その中には、メアリー・ガーカス(ニューヨーク大学教授、ネタ・ゲイリー・マーカス)もいます。このタイプの人々とは、バックプロパゲーションは衰退しており、ディープラーニングは行き詰まっていると考える博士課程の学生のグループを指します。

誰かが言っていたように、AI 人口を DND (ダンジョンズ & ドラゴンズ) 座標系に従って 9 つのカテゴリに分類すると、次のようになります。

少し考えてみたら、私は今でもまだリラージ・サヴァルの段階にいると思うようになりました。

しかし、少なくとも私たちは、ある元知事より一歩進んでいる。

[この記事は51CTOコラム「Machine Heart」、WeChatパブリックアカウント「Machine Heart(id: Almosthuman2014)」からのオリジナル記事です]

この著者の他の記事を読むにはここをクリックしてください

<<:  Python データ分析の基礎: 外れ値の検出と処理

>>:  ディープラーニングを活用してネットワークセキュリティを実現する方法

ブログ    
ブログ    

推薦する

旅の途中を超えて?文脈学習に基づく画像拡散モデルのトレーニング [Frontiers]

1. 背景知識 - テキスト画像生成の現状まずは背景知識をご紹介します。テキスト画像生成モデルにつ...

人工知能はターミネーターとなるのか?ぜひ見に来てください!

[[253100]]映画「ターミネーター」を見たことがある人は多いでしょう。実は、ターミネーターに似...

...

Baiduの李振宇氏:Apollo 3.0のリリースはApolloのオープン性の新たな出発点です

自動車業界から大きな注目を集めるアポロオープンプラットフォームは、新たな量産時代を迎えました。 7月...

...

...

スマート充電インフラ: 電気自動車の充電における人工知能の貢献

政府の電気自動車推進のビジョンに後押しされ、電気自動車業界はここ数年で大きな勢いを増しています。さら...

IDC: 高速サーバー市場は2023年上半期に31億ドルに達し、GPUサーバーが依然として主流となる

10月9日、IDCコンサルティングの公式WeChatアカウントによると、IDCは本日「中国半期加速コ...

睡眠研究はより優れた AI モデルの作成に役立ちますか?

私たちはなぜ眠るのでしょうか? 明らかな理由の一つは、体と手足の力を回復することです。しかし、睡眠の...

金融業界がAI自動化を採用すべき理由

ガートナーによると、「ロボティック・プロセス・オートメーション(RPA)ソフトウェア市場は2020年...

...

2019年インターネット人材採用レポート:Javaは人気だが、アルゴリズムエンジニアは不足している

技術の変化、才能主導。インターネットにおける現在の仕事の機会とトレンドはどこにありますか?本稿では、...

ディープラーニング可視化ツールの包括的なレビュー(リソース付き)

ディープネットワークは機械学習の研究・応用分野に大きな影響を与えてきましたが、同時にディープネットワ...

AIが金融犯罪を予測、検出、防止する方法

調査によると、金融詐欺は個人や企業に多大な損失をもたらします。銀行は、フィンテックと競争するために機...