Julia vs Python: 2019 年に機械学習でナンバー 1 になるプログラミング言語はどれでしょうか?

Julia vs Python: 2019 年に機械学習でナンバー 1 になるプログラミング言語はどれでしょうか?

[[252207]]

[51CTO.com クイック翻訳] Juliaは2018年に登場し、現在最も急速に成長しているプログラミング言語の1つになりました。いくつかの主要言語の利点を組み合わせたことで高く評価されています。

Julia は最近バージョン 1.0 に到達し、その開発者たちは現在、これを機械学習の主要言語にすることを目指して取り組んでいます。

この目標の達成に役立つのが、Julia 用の機械学習ソフトウェア ライブラリである Flux です。Flux は、機械学習コードの記述を容易にし、トレーニング プロセスを簡素化し、GPU や Google の Tensor Processing Unit (TPU) などのハードウェア アクセラレータ上の競合フレームワークよりも大幅なパフォーマンス上の優位性を提供することを目指しています。

現在、機械学習の分野では Python と R が一般的に主流であり、強力な機械学習フレームワークとライブラリのおかげで、Python は開発者の間で人気の点で最も急速に成長しているプログラミング言語であり続けています。対照的に、新興の Julia を使用する開発者は比較的少数です。

そうは言っても、Julia の開発チームは、機械学習で使用されるニューラル ネットワークの構築に使用できるデータ駆動型の手続き型コードである微分可能アルゴリズムの構築に適した言語を開発したと述べています。

「微分可能なアルゴリズムを書くための言語が必要であり、Flux は Julia がその言語になる手助けをします」と Julia チームはブログ投稿に書いています。

「Julia は数学と数値計算のためにゼロから設計されたため、機械学習アルゴリズムの表現に非常に適しています。同時に、コンパイラーに最新の設計と斬新なアイデアが組み込まれているため、高度な機械学習の高性能要件を満たすことが容易になります。」

ブログ記事によると、Flux ライブラリは、パフォーマンスと開発者の制御のバランスを改善するための第 1 レベル勾配のサポート、GPU 用のジャストインタイム CUDA カーネル コンパイル、トレーニング中のオーバーヘッドを削減するための自動バッチ処理、Google TPU での実行の最適化など、機械学習用のさまざまなツールで Julia のコンパイラを拡張します。

チームによれば、Julia は Flux、近々登場する微分可能プログラミング言語 Myia、そして最近の Tensorflow 向け Swift とともに、近いうちに従来の機械学習フレームワークやアプローチに挑戦する可能性があるという。

「機械学習の未来は言語とコンパイラ技術、特に機械学習研究の高い要求を満たすために新旧の言語を拡張することにあると私たちは信じています」と研究チームは書いている。彼らはさらに、「微分化、ベクトル化、異種ハードウェアをサポートする」言語が「科学の多くの進歩を推進する」だろうと付け加えた。

Julia チームは、「これらの次世代ツール (Myia、Swift/TF、Flux) が、既存のツール (TensorFlow、PyTorch、Knet) と同様に実稼働環境に対応できるようになるまでには、まだ道のりが残っています」と述べています。

「しかし、機械学習で新たなブレークスルーを起こすのであれば、これが最善の策かもしれません。試してみて、機械学習の未来がどうなるか見てみましょう。」

Julia が今年初めにバージョン 1.0 に到達して以来、この言語のユーザーはその進歩について概ね楽観的ですが、エラー処理や役に立たないドキュメントについて懸念する人もいます。

LinkedIn によると、機械学習エンジニアは近年最も急速に成長している職種であり、この分野に特化したい開発者向けに利用できる無料コースがますます増えています。

原題: Julia vs Python: 2019 年に機械学習を支配するプログラミング言語はどれか?、著者: Nick Heath

[51CTOによる翻訳。パートナーサイトに転載する場合は、元の翻訳者と出典を51CTO.comとして明記してください]

<<:  2019年に人工知能はどこに向かうのでしょうか? 120人の幹部が意見を述べた

>>:  PaddlePaddle を使用してオブジェクト検出タスクを実装する - Paddle Fluid v1.1 の詳細なレビュー

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

産業用ロボットは2021年に44.9%成長し、2022年の成長率は低下すると予想されている

産業用ロボットの年間成長率は44.9%でしたが、累積成長率は月ごとに低下しました。 Windのデータ...

行列分解はディープラーニングに勝る! MIT が時系列データベース tspDB をリリース: 機械学習に SQL を使用

人類が歴史から学んだ唯一の教訓は、人類は歴史から何も学べないということだ。 「しかし、機械は学習でき...

Buildで発表された新しいMicrosoft Store AIハブが現在展開中

7月11日、ネットユーザーは、MicrosoftがBuildカンファレンスで発表した新しいMicro...

マイクロソフト、NvidiaとIntelに対抗する2つのカスタムAIチップをリリース

マイクロソフトは最近、シアトルで開催されたIgniteカンファレンスで2つのAIチップをリリースした...

金融ロボアドバイザーは3つのトレンドによって増加傾向にある

編集者注: ロボット アドバイザーの登場により、従来のアドバイザーはどこへ向かうのでしょうか。これは...

AIとデータサイエンスの未来を形作る主要なトレンド

データ中心の機能と対象顧客への理解を備えた人工知能とデータサイエンスが世界を席巻しています。企業は、...

ドイツのセキュリティ専門家がGPRS暗号化アルゴリズムの解読に成功

セキュリティ・リサーチ・ラボのディレクター、カーステン・ノール氏は、このクラックによりGPRSの盗聴...

AI | 人工知能、プログラマーの終焉?

AIといえば、一般の人はまだそれが何なのか知らない人が多いかもしれません。 Baidu 百科事典で...

「AIGC+」|新たなマーケティングパラダイム:AIGCは海外進出企業にとって「新たな武器」となり得るか?

わずか 1 年で、AIGC がもたらした業界を変革するアプリケーションは、徐々に人々の生活の隅々に浸...

大規模モデルをより強力にするには、検索拡張生成を使用します。ここでは、Python による実装手順を示します。

この記事では、まず RAG の概念と理論に焦点を当てます。次に、オーケストレーション用の LangC...

DAMOアカデミーのAI研究により、初めて大規模な膵臓がんの早期スクリーニングが可能に

私たちの日常生活では、携帯電話のロック解除から検索エンジンを使った地図ナビゲーションまで、人工知能と...

...

アルゴリズムを理解するパート 2 - シーケンス テーブル

[[407946]]この記事はWeChatの公開アカウント「Front-end Gravitatio...

...

機械学習を使用して暗号プロジェクトのリスクを特定するにはどうすればよいでしょうか?

暗号通貨と規制の必要性暗号通貨は、デジタル世界に存在する交換手段(別の支払い形式)であり、取引を安全...