プログラマーはどのようにして人工知能を学ぶのでしょうか? 2019 年の人工知能の給与見通しはどうでしょうか?

プログラマーはどのようにして人工知能を学ぶのでしょうか? 2019 年の人工知能の給与見通しはどうでしょうか?

2019年の人工知能の給与水準、まずは全体の給与水準の2つの分析グラフを見てみましょう!

***は、異なるレベルの給与の分布を示すグラフです。

プログラマーはどのようにして人工知能を学ぶのでしょうか? 2019 年の人工知能の給与見通しはどうでしょうか?

2枚目の図は、人工知能業界とインターネット業界の給与比較です。職務経験が増えるにつれて、給与水準は徐々に上昇します。

プログラマーはどのようにして人工知能を学ぶのでしょうか? 2019 年の人工知能の給与見通しはどうでしょうか?

上記は、人工知能分野の現在の給与水準の大まかな概要です。

展望がわかったところで、人工知能を学ぶ方法を見てみましょう。基本的な知識がまったくない場合、ある程度の知識がある場合は、すでに習得しているテクニックの一部をスキップできます。

1. 実践的な基礎、高度な数学と Python プログラミング言語を学びます。

人工知能には多くのデータとアルゴリズムの問​​題が含まれており、これらのアルゴリズムは数学的に導き出されるため、アルゴリズムを理解したい場合は、まず高度な数学の知識を習得する必要があります。

まずは、基本的なデータ分析、線形代数、行列などから始めて、高度な数学の基礎知識を徹底的に学びます。基礎があって初めて、層ごとに積み重ねていきます。論理なしに一度​​に1つずつ学ぶことはできません。

次のステップは、Python プログラミング言語を学ぶことです。Python には豊富で強力なライブラリがあり、人工知能の学習のための基本的なプログラミング言語として非常に適しています。

2. ステージ昇格、機械学習アルゴリズムの学習+実践演習を開始します。

上記の基礎を習得した後は、機械学習アルゴリズムの学習を開始し、ケース実践を通じて理解と習熟を深める必要があります。挑戦できる小さな機械学習のケースがたくさんあります。前半をしっかりマスターすれば、後半はずっと簡単になります。

3. 自分自身に挑戦し続け、ディープラーニングに取り組んでください。

ディープラーニングでは、モデルをトレーニングするために大量のラベル付きデータが必要なので、データマイニングとデータ分析のスキルを習得し、それらを使用してモデルをトレーニングする必要があります。ここで疑問に思うことがあるかもしれません。ディープラーニングには多くのニューラルネットワークが関係していて、非常に複雑に見えます。これらのニューラルネットワークを編集するのは難しいはずです。心配しないでください。Google、Amazon、Microsoftなどの大企業は、すでにこれらのニューラルネットワークモデルをそれぞれのフレームワークにカプセル化しています。それらを呼び出すだけです。

4. 継続的な練習と曽謙自身の力と経験。

実際の戦闘は真実をテストするための最良の基準です。基本的な技術理論を習得したら、さらに練習を重ね、理論を継続的に検証し、技術を更新する必要があります。条件が許せば、プロジェクトの初期のデータマイニングから始めて、中間モデルをトレーニングし、興味深いプロトタイプを作成し、一連のプロセス全体を実行できます。これで、おめでとうございます。ジュニア人工知能エンジニアのレベルに到達しました。

<<:  人工知能は理想的なサイバー防御手段か?

>>:  AI バイブル PRML「パターン認識と機械学習」が Microsoft によって正式にオープンソース化されました。

ブログ    

推薦する

人工知能シンギュラリティと人類の未来

「シンギュラリティ」は、人工知能(AI)の将来展望とその社会的影響を説明する重要な概念です。 AIの...

2019 年に注目すべき 10 社のクールなロボット スタートアップ

[51CTO.com クイック翻訳] ロボットは登場しましたが、現在はほとんど世間の注目を浴びていま...

テンセント・ユートゥと厦門大学は、トレーニングを必要としないViT構造検索アルゴリズムを提案した。

最近、ViT はコンピューター ビジョンの分野で強力な競争力を発揮し、複数のタスクで驚くべき進歩を遂...

1年間で18本の論文:Google Quantum AI チームの2021年年次概要

量子コンピューティングは、常に次の産業革命の原動力と考えられてきました。さまざまな国やテクノロジー企...

Googleは報道機関向けにAIツールを展開

Google は、ジャーナリストの記事作成を「支援」すると主張し、新しい人工知能ツール Genesi...

...

...

DeepSense: モバイルセンサーの時系列データを処理するためのディープラーニングフレームワーク

DeepSense は、エンドデバイス上で実行されるディープラーニング フレームワークです。ローカル...

...

...

認知科学から進化まで、強化学習における最新の2つのブレークスルーを詳しく説明します

ビッグデータダイジェスト制作編纂者:李磊、銭天培近年、深層強化学習 (Deep RL) は人工知能に...

TENSORFLOW に基づく中国語テキスト分類のための CNN と RNN

[[211015]]現在、TensorFlow のメジャーバージョンは 1.3 にアップグレードさ...

おそらく2030年までに、量子コンピューティングのChatGPTの瞬間が到来するだろう

2030 年までに RSA 暗号を解読できるマシンが登場するでしょうが、まずは量子センシングやその他...

シリコンバレーの人工知能専門家:人類は20年以内に老化の束縛から解放されるかもしれない

現在、世界最高齢の人は、ギネス世界記録に認定された118歳の日本人老人、田中カネさんです。田中選手の...

口の中に124個のセンサーを埋め込み、Google Glassの創設者の新プロジェクト:舌でメッセージを送信

不運なGoogle Glassはスマートデバイスの波の中で大きなインパクトを与えることはできなかった...