AI と機械学習: 大きなデマか、それとも大きな希望か?

AI と機械学習: 大きなデマか、それとも大きな希望か?

ダニング=クルーガー効果は重大なバイアスです。これは、能力の低い人が自分の軽率な決断に基づいて誤った結論を導き出すが、自分の欠点を正しく認識できず、間違った行動を特定することができないという事実を指します。能力のない人々は、自分自身が作り出した幻想的な優位性に浸っています。彼らは自分の能力レベルを過大評価することが多く、他人の能力を客観的に評価することができません。

[[261538]]

現在、インターネット、ブロックチェーン、クラウドコンピューティングといった、人類史上の三大技術ブームとも言える技術が台頭しています。しかし、残念ながら、これらの技術の応用において、この効果が再び現れています。十分な実力を持たない多くのメーカーが、これらの新たな用語を利用して、誇張したり、誇張したりしています。では、人工知能 (AI) と機械学習 (ML) は単なる嘘なのか、それとも希望なのか?

ここで確かなことの 1 つは、将来 AI 同士がより多くやり取りするようになるということです。たとえば、サイバーセキュリティ作業の多くは AI によって管理されるようになりますが、現時点ではそうではありません。テクノロジーは予測を覆す傾向があり、予想よりずっと早く、あるいはずっと遅く到来します。 AIの黎明期には、人々はAIが「問題を素早く解決する」ことを期待していましたが、それは50年前のことです。

事実、私たちはまだチューリングテストを解いていません。ホモ・サピエンスにとって、対話できる他の知性体は存在しません(少なくとも、ネアンデルタール人、ホモ・ハビリス、ホモ・エレクトスなどの他のホモ種が絶滅して以来)。いつか私たちがこのような思考する機械を作ることができれば、「人工」という言葉は完全に使われなくなるのではないかと思います。

最も重要な意味上の相違点は、AI は「愚か」と「HAL 9000」(『2001年宇宙の旅』に登場する殺人ロボット)という二元対立ではなく、知性の連続体に沿った認知の追求であるという点です。簡単な例え話があります。家は多くの道具を使って建てられますが、大工道具はその道具一式です。しかし、大工道具があるからといって、それが家と呼ばれるわけではありません。拡張すると、ML アプリケーションを AI と呼ぶのは誤りですが、セキュリティ分野ではこれが起こっています。誰かがコンセプトをうまく置き換えてAIのロゴを植え付けましたが、これは実は大きな間違いです。

今日、ML は、決して魔法のようなものではない古いツールの集合体であるにもかかわらず、復活を遂げ、繁栄しています。 しかし、コンピューティングとデータがあらゆる場所に存在することを考えると、機械学習と呼ばれる、非常に高性能で便利、かつスマートなアプリケーションが爆発的に増加し、セキュリティも大幅に強化されています。これは朗報です。 しかし残念なことに、ビジネス プラン、技術文書、マーケティングでは、依然として ML が魔法の言語として使用されています。この用語が使用されるときはいつでも、まずどのようなタイプの機械学習が使用されているか(例:線形回帰、ロジスティック回帰、決定木、SVM、ナイーブベイズ、K-NN、K-Means、ランダムフォレスト、次元削減など)を答えられる必要があります。 そしてそれがどのように展開され、訓練されるか。 これには ML の学位は必要ありませんが、平均的な人が理解できる方法で回答する必要があります。

セキュリティにおける「人間支援型」ML アプリケーションの黄金時代を迎えつつあるため、ここにも希望があります。私たちは、すべての問題を解決するために、会議での講演や SF 論文での「大げさな宣伝」に頼ってきましたが、今では、本当に役立つものに到達する前に最終段階に達しています。 ML は、マルウェア予測、インシデント対応、フォレンジックガイダンスなどのアプリケーションを自動化し、人間の作業を効率化する上で最も有望です。これらはすべての問題を魔法のように解決するわけではありませんが、サイバーセキュリティの問題をはるかに扱いやすくし、人間の仕事の遂行を容易にします。

いつか ML と AI が攻撃面でも防御面でもセキュリティの状況を変えるでしょうが、それは今はまだその時ではありません。しかし、認証、境界制御、リスク分析、脆弱性管理、内部脅威の検出、捕捉、修復などに関する作業が改善されているため、研究がそれほど刺激的な結果を生み出す必要はありません。マーク・トウェインの言葉を借りれば、「継続的な改善は、遅れた改善よりも優れている」ということです。

<<:  Facebookは、数億のノードでタスクを迅速に完了できる大規模なグラフ埋め込みアルゴリズムをオープンソース化しました。

>>:  298.2億ドル規模のロボット市場がなぜこれほど不振なのか?

ブログ    

推薦する

...

2023 年の AI セキュリティに関するトップ 10 の話題

生成 AI は 2022 年末までに世界を席巻し、2023 年には AI 分野が脚光を浴びることにな...

人工知能は本当に万能なのでしょうか?

多くのセキュリティ業界の専門家は、過去 10 年間に登場した新しいテクノロジーを振り返り、将来のテク...

...

AIと分析がIoT収益化の鍵となる理由

通信業界は現在、競争力を維持するために IoT を収益化するという厳しい課題に直面しており、高度なテ...

...

ハイテク:米国は1キロメートル以内のターゲット認識を実現する長距離顔認識システムを開発

海外メディアの報道によると、最近「ニューサイエンス」誌に次のような記事が掲載された。 「米軍は1キロ...

「一歩ずつ考えよう」というマントラよりも効果的で、プロジェクトが改善されていることを示す

大規模言語モデル (LLM) は、適切なプロンプトがあれば、多くの自然言語処理タスクにとって強力なツ...

...

...

建築環境における人工知能:その可能性を実現するためのステップ

AI と自動化により、企業はさまざまな最適化ソフトウェアを使用して、冷房、暖房、発電を自動的に改善し...

VAE から拡散モデルへ: テキストを使用して画像を作成する新しいパラダイム

1 はじめにDALL·E のリリースから 15 か月後、OpenAI は今春、続編の DALL·E ...

AIが金融犯罪を予測、検出、防止する方法

調査によると、金融詐欺は個人や企業に多大な損失をもたらします。銀行は、フィンテックと競争するために機...

中国の自動運転はアメリカの自動運転と比べてどう劣っているのか?

アリゾナ州フェニックスからテキサス州エルパソまでの距離は約 690 キロメートルで、地図に示されてい...