エンタープライズ向け人工知能プラットフォームの選択ガイド

エンタープライズ向け人工知能プラットフォームの選択ガイド

企業における人工知能の応用はますます広範になってきており、産業化される可能性もあります。既存のデータ サイエンス プラットフォームをベースにするか、オールインワン ツールを使用するか、クラウドまたはオンプレミスでデータをホストするかにかかわらず、利用できるソフトウェア ソリューションは豊富にあります。そのため、選択肢が豊富なからといって、IT ソリューションの存在意義を忘れてはなりません。究極のソリューションを確保しようとしている企業は、これまで以上に、需要に応える決意を固めなければなりません。

パート 1: AI とビジネス ニーズの評価

(1)流行語を信じない

AI を評価する際に最初に知っておくべきことは、流行語を信じないことです。ビッグデータ、IoT、ブロックチェーンなど、さまざまな用語で言われている「期待される革命」が現実ではないことはよく知られています。たとえば、IT チームには、ビジネス ニーズ (この場合、チームと企業のニーズとして定義されます) を考慮せずに、特定の新しいテクノロジを実装する必要があると伝えられます。したがって、企業は成功への第一歩として、これまで以上に需要に注意を払う必要があります。 AI は、単純な「if-then-else」ステートメントで解決できる状況に使用されることもあります。しかし、実際には、AI は単純なアルゴリズムでは解決が難しい問題に使用するのが最適です。

(2)何が必要ですか?

もちろん、これはなぜなのか、そしてさらに重要なことに、何が達成されているのかを問うことを意味します。多くの場合、経営陣が要件を策定したとき、その要件は必ずしも完全ではありません。たとえば、企業が AI プラットフォームを構築する必要があり、その企業の株主が来年の利益の倍増を要求している場合、これを考慮する必要があります。企業の目標、経営陣の目標だけでなく、企業のニーズとその結果も理解する必要があります。

もちろん、要件を明確にすることは必要であり、特定されたユースケースを把握しておくことは常に良い考えです。これには、競合他社の情報(競合他社は関連するユースケースを実装しているかどうか)だけでなく、サプライヤーとの話し合い、展示会への参加、そしてもちろん会社のプロセスを理解することも必要です。

(3)AIのユースケースは何ですか?

AI の使用例は無限にありますが、比較的反復的なものもあります。複数の業界で頻繁に見られる特徴をいくつか挙げます。

  • マーケティングの自動化と定義。
  • 売上予測、リード生成、分析ベースのトレーニング。
  • 不正検出における人工知能 (ただし、CEP プラットフォームを通じて部分的に実現可能)。
  • カスタマイズされたサービス。
  • 在庫管理。
  • 自動メール送信、文書処理、意思決定サポートなどの管理タスク。
  • 意思決定の自動化(特に法律および保険分野)。
  • 予測メンテナンス。

(4)人工知能を導入する際の問題点は何ですか?

ユースケースで AI を使用する必要があるかどうか疑問に思う場合は、ユースケースをコンピューター化する必要があるかどうかを尋ねる価値があります。尋ねるべき主な質問は次のとおりです。

  • AI ソリューションがうまく機能しない場合、どのような結果になるのでしょうか?
  • AI ソリューションに偏りがあった場合、どのような影響があるでしょうか?
  • AI プロジェクトによる決定には法的影響がありますか?
  • 顧客との関係において人間性が失われるリスクはありますか?
  • 人間がまだ不可欠なユースケースで、本当に役立つのでしょうか?

パート2: 構築 vs. 購入

プラットフォームを社内で構築するか、外部から購入するかを検討する際、企業は「ニーズは非常に具体的または小さいか」といういくつかの質問に答える必要があります。その答えが「いいえ」であれば、購入する準備をする必要があります。より詳細なリストは次のとおりです。

  • 構築と購入のビジネス プランを比較します。
  • ニーズがある程度特殊である場合、市場にはそれに対応する AI ソリューションが含まれていますか?
  • ベンダーは既にあなたのユースケースに適したソリューションを持っていますか?
  • ベンダーは 4 年以内に倒産する重大なリスクにさらされていますか?
  • 企業は競争を排除する方法で AI を使用できるでしょうか?
  • 完全なベンダー独立性を要求する重要な要件はありますか?

パート3: AIエンタープライズプラットフォーム

(1)AI機能一覧

企業が検討しなければならない機能と AI プラットフォームが対応すべきニーズのリストは次のとおりです。

  • データ統合。
  • データガバナンス。
  • 実験して開発する。
  • 展開と監視。
  • インテリジェント エンジン (機械学習プログラム、ライブラリなど)。
  • 最適化機能。
  • コラボレーション能力。
  • 視覚化。

(2)サプライヤータイプリスト

市場には多くのサプライヤーが存在するため、何が必要かを判断するのは企業次第です。ここでは、遭遇する可能性のあるベンダーの 2 つの主なカテゴリと、それらの主な違いをいくつか示します。

エンタープライズAIプラットフォームの代替

エンタープライズ AI プラットフォームは、ここで説明したユースケースに対する唯一のソリューションではありません。企業のユースケースが業界内で単純であるか冗長であるかに応じて、「ビジネス指向のソリューション」とロボティック プロセス オートメーション (RPA) という 2 種類のプラットフォームが関連する可能性があります。

(1)「ビジネスに特化した」プラットフォーム

一部の分野では、特定のトピックに重点を置いたソリューションを販売する従来のベンダーが企業に存在する場合があります。特に製造業では、AI テクノロジーを積極的に採用し、工場の管理や予知保全などに役立つ既製の AI ソリューションを提供している老舗のサプライヤーが企業に存在する場合があります。これらのソリューションは直接使用でき、そのユースケースの一部をカバーできる場合があります。

(2)ロボティック・プロセス・オートメーション

ロボティック・プロセス・オートメーション (RPA) は、人間の動作を「ロボット化」しようとするバンドルソリューションです。これらのソリューションは OCR ソリューションを補完しますが、多くの AI ユースケースをカバーするために、電子メールで応答を記述して送信することもできます。このソリューションの ROI は非常に高くなる可能性があります。ただし、RPA と操作対象のアプリケーション間の依存関係を管理するのは難しい場合があります。理想的には、ビジネス ソフトウェアがほとんど進化しない場合は、ロボティック プロセス オートメーション (RPA) を検討する必要があります。

結論は

これらの洞察が企業の準備に役立つことを願っています。 AI が何ができるか、そして私たちが AI に何をしてほしいかという理解には大きなギャップがあります。ビジネス ニーズの評価から正しい方向への集中、自社での構築またはベンダーからの購入、オンプレミスまたはクラウドでの管理まで、企業はビジネス ユース ケースに適した選択を行うために必要なツールを手に入れることができます。

<<:  2022年、人工知能が未来への新たなパスワードを開く

>>:  人工知能が製造業のデジタル変革を推進

ブログ    

推薦する

Google Gemini の大きな転換? Stanford Meta Chinese は推論性能が GPT-3.5 よりも優れていることを証明

Gemini の推論能力は本当に GPT-4 よりも弱いのでしょうか?以前、Google の大ヒット...

懸念にもかかわらず、CIOはAIGCの利点を探求し、活用し続けています。

OpenAIは2022年11月にChatGPTをリリースし、その後Microsoftから100億ド...

5年後に最もホットなものは何でしょうか? 2025 年のトップ 10 トレンド: ゼロ検索時代の到来

[[273076]]ファーウェイは8月8日、世界産業展望GIV@2025を発表し、次のように予測した...

座標系の変換を本当に理解していますか?自動運転にはマルチセンサーが不可欠

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

マイクロソフト、ヘルスケア業界がデータの価値を解き放つための新しい AI ソリューションをリリース

ヘルスケア業界とそのサービス技術が急速に発展するにつれて、大量のデータと情報が生成されます。統計レポ...

人工知能はどのようにして自分自身に目標を設定するのでしょうか?

インテリジェントシステムは独自の初期目標を決定することはできませんが、経験に基づいて独自の派生目標を...

人工知能はサイバーセキュリティにとって役立つのか、それとも脅威となるのか?

企業に対するセキュリティ上の脅威は常に存在していましたが、インターネットの発展により、脅威は物理空間...

北京、AIビッグモデルとロボットの統合開発を支援するロボット産業向けの新政策を発表

北京市人民政府弁公庁はこのほど、「北京市ロボット産業革新発展行動計画(2023~2025年)」を発表...

エンドツーエンドの自動運転までどれくらい遠いのでしょうか?

エンドツーエンドの自動運転は、システムの複雑性が高まるなどのモジュール式システムに伴う欠点を回避でき...

ML モデルに魂を吹き込む: MVP に基づく超シンプルなデプロイメント ソリューション

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

機械学習と人工知能の未来について語る

[[258702]] [51CTO.com クイック翻訳] 機械学習 (ML) と人工知能 (AI)...

...

OpenAIがマスク氏に正面から対決!イリヤは8年間のメールの「犯罪」を暴露した後、ついに姿を現した

5日後、OpenAIはついにマスク氏の訴訟に正式に反応しました。ちょうど今、OpenAI は同社とマ...

なぜほとんどの人工知能は「人工的な知的障害」のように見えるのでしょうか?

[[431114]]当時流行した「インターネット+」を覚えている人はいるだろうか...「衣食住交通...