「素晴らしい成果物!」ハードウェア AI パフォーマンス テスト用の Python ライブラリがリリースされました

「素晴らしい成果物!」ハードウェア AI パフォーマンス テスト用の Python ライブラリがリリースされました

現在、人工知能技術は急速に発展しており、非常に注目を集めています。しかし、数多くの方法があるにもかかわらず、さまざまなアルゴリズムのトレーニングと推論におけるさまざまなハードウェアのパフォーマンスを測定するための信頼性が高く正確なベンチマークは現在存在しません。

[[269231]]

さあ、心配しないでください。外国人の友人、Andrey Ignatov が Python ライブラリをリリースしました。この Python ライブラリを使用して、ハードウェアのパフォーマンスをテストできます。

AI Benchmark Alpha は、CPU、GPU、TPU などのさまざまなハードウェア プラットフォームで AI パフォーマンスを評価するためのオープン ソースの Python ライブラリです。 このベンチマークは TensorFlow 機械学習ライブラリに依存しており、主要なディープラーニング モデルの推論とトレーニングの速度を評価するための正確で軽量なソリューションを提供します。 AI Benchmark は現在、Windows、Linux、または macOS を実行している任意のシステムにダウンロードできる Python pip パッケージとしてリリースされています。

このパッケージは 6 月 26 日に 2 つのバージョンをリリースしました。1 つは 0.1.0、もう 1 つは 0.1.1 です。

現在、パフォーマンス テストでは次のアルゴリズムがサポートされています。

● セクション 1: MobileNet-V2、分類

● セクション 2: Inception-V3、分類

● セクション 3: Inception-V4、分類

● セクション 4: Inception-ResNet-V2、分類

● セクション 5: ResNet-V2-50、分類

● セクション 6: ResNet-V2-152、分類

● セクション 7: VGG-16、分類

● セクション 8: SRCNN 9-5-5、画像間マッピング

● セクション 9: VGG-19、画像間マッピング

● セクション 10: ResNet-SRGAN、画像間マッピング

● セクション 11: ResNet-DPED、画像間マッピング

● セクション 12: U-Net、画像間マッピング

● セクション 13: Nvidia-SPADE、イメージ間マッピング

● セクション 14: ICNet、画像セグメンテーション

● セクション 15: PSPNet、画像セグメンテーション

● セクション 16: DeepLab、画像セグメンテーション

● セクション 17: Pixel-RNN、画像修復

● セクション 18: LSTM、文章感情分析

● セクション 19: GNMT、テキスト翻訳

同時に、著者はいくつかのテスト結果も示しています。とても興味深いです:

現在最も人気のあるデスクトップ GPU は GeForce GTX 1080 Ti です。次はTITAN Xp CEとGeForce GTX TITAN Xです。

このライブラリの使用も非常に簡単です。まずは pip install ai-benchmark を実行します。これを実行するには、tensorflow をインストールする必要があることに注意してください。

使い方は次のとおりです:

  1. ai_benchmarkからAIBenchmarkをインポート
  2. 結果 = AIBenchmark().run()

自分でテストしてみましたが、とても簡単です:

ご覧のとおり、MobieNet-V2 アルゴリズムでの私のハードウェアのトレーニング速度は約 27688±741 ミリ秒で、推論速度は約 2747±119 ミリ秒です。このスピードはひどい。あなた自身の結果を確認することができます。

<<:  Baiduの王海峰氏はオープンソースのディープラーニングプラットフォームPaddlePaddleを2019年のソフトウェアエキスポに導入した。

>>:  中国、自動運転を含む情報技術の注目の10大問題を発表

ブログ    
ブログ    

推薦する

李開復:中国の大型モデル競争は非常に激しく、最終的には大きな勝者が数人出るだろう

12月28日、ベンチャーキャピタリストで元Google China社長の李開復氏の予測によれば、中国...

人工知能とビッグデータがビジネス環境をどう変えるのか

人々がビジネスを行うようになって以来、ビジネスを強化するためにテクノロジーが活用されてきました。 1...

AIが再び大学入試小論文に挑戦、強力なハードコア技術で「数秒」の文章作成を実現

昨日(6月7日)、2022年度全国大学入学試験が始まりました。午前中に中国語科目試験が終了し、中国語...

信頼とセキュリティの分野におけるデータサイエンスの典型的な 7 つの使用例

信頼とセキュリティとは何でしょうか? 現在の世界ではどのような役割を果たしているのでしょうか? 多く...

人工知能はスポーツや芸術教育における革新的な発展をどのように促進できるのでしょうか?

[[407981]]著者テンセント研究所の上級研究員、周丹氏趙雲傑 テンセント研究所 研究助手20...

Adobe がインドのスタートアップ Rephrase.ai を買収、生成 AI 分野で初の買収となる

海外メディアの報道によると、デザインソフトウェアプロバイダーのAdobeは最近、インドの生成AIスタ...

...

CIOがAIのビジネスケースを作成する方法

近年、AI プロジェクトに対する組織の関心は着実に高まっています。調査会社ガートナーの調査によると、...

...

ChatGPTのおばあちゃんバージョンが爆発しました! Microsoft を裏切り、Win11 の秘密キーを漏洩!

著者: 徐潔成校正:Yun Zhao大規模なモデルを破損させるコストは本当に低すぎます。 ChatG...

...

...

人工知能を導入する際にプライバシーを保護するための 3 つの重要なセキュリティ対策

AI 戦略を導入する前に、企業はプライバシーを保護し、セキュリティ標準への準拠を確保するために新しい...

...

Google、検索結果にAIベースの「要約」機能を追加

Googleは8月4日、今年のGoogle I/Oで「Search Generative Engin...