初め!プログラム可能なメモリスタコンピュータが誕生しました!

初め!プログラム可能なメモリスタコンピュータが誕生しました!

[[271164]]

人類史上初のプログラム可能なメモリスタ コンピュータが誕生しました。音声コマンドをクラウドに送信して解釈する必要がなくなりました。代わりに、AI プロセッサを介してスマートフォン上で直接完了できるため、応答時間が大幅に短縮されます。医療機器など、プライバシーを重視するシナリオでは、セキュリティとプライバシーが向上します。

将来、スマートフォンが複雑な AI タスクを直接処理できるようになる可能性があると考えたことはありますか?鍵はそこにあります。人類史上初のプログラム可能なメモリスタ コンピュータです。

ミシガン大学で開発されたプログラム可能なメモリスタ コンピュータは、外部のコンピュータによって操作される単なるメモリスタの配列ではなく、スマートフォンやセンサーなどの小型でエネルギーが制限されたデバイス上で人工知能タスクを直接処理できます。

つまり、将来的には、音声コマンドをクラウドに送信して解釈する必要がなくなり、AIプロセッサを介してスマートフォン上で直接完了できるようになり、応答時間が大幅に短縮されます。医療機器など、プライバシーを重視するシナリオでは、より優れたセキュリティとプライバシーを実現できます。

人工知能の強力な計算能力がもたらす悪影響の 1 つは、膨大なエネルギー消費です。誰もがスマートフォンに AI プロセッサを搭載することを望んでいますが、1 日に 12 回もスマートフォンを充電する必要はありません。

メモリスタが機械学習に適している理由

ここで言及されている高度なコンピュータ コンポーネントであるメモリスタは、情報のストレージとして使用できるメモリと可変抵抗を備えた抵抗器です。

メモリスタは情報を同じ場所に保存して処理するため、計算速度と電力消費の大きな障害であるメモリとプロセッサ間の接続を排除できます。

これは、写真やビデオ内の物体を識別したり、どの病院患者の感染リスクが高いかを予測したりするなど、大量のデータを処理する機械学習アルゴリズムにとって特に重要です。

今日では、プログラマーはこれらのアルゴリズムを CPU ではなくグラフィックス プロセッシング ユニット (GPU) で実行することに慣れています。

「GPU、つまりカスタム最適化されたデジタル回路は、電力とスループットの点でCPUよりも10~100倍優れていると考えられています」とLu氏は語った。 「Mmristor AI プロセッサは 10 ~ 100 倍優れている可能性があります。」

GPU は、同時に計算を実行できる数千の小さなコアを備えているため、機械学習タスクに優れています。メモリスタ アレイはさらに一歩進んでおり、各メモリスタが独立して計算を実行できるため、コアは一度に数千の操作を実行できます。

実験に使用されたコンピュータには 5,800 個以上のメモリスタが搭載されています。商業利用の場合、数百万に達する可能性があります。

[[271165]]

メモリスタアレイは、機械学習アルゴリズムがデータをベクトルに変換するため、機械学習タスクの解決に特に適しています。たとえば、病院内で患者の感染リスクを予測する場合、ベクターは感染リスクをもたらす要因を数値形式でリスト化できます。

次に、機械学習アルゴリズムはこれらの「入力」ベクトルをメモリ内の「特徴」ベクトルと比較します。一致した場合、システムは入力データにその特性があることを認識します。ベクトルは数学的なスプレッドシートと同様に行列に格納され、これらの行列はメモリスタアレイに直接マッピングできます。

さらに、データがアレイを通じてフィードバックされると、数学的処理のほとんどはメモリスタ内の自然抵抗を介して行われるため、特徴ベクトルをメモリ内外に移動することによって発生する余分な計算が不要になります。これにより、配列は複雑な行列計算において非常に効率的になります。

これまでの研究では、メモリスタアレイが機械学習を加速させる可能性があることが実証されていますが、動作させるには外部のコンピューティング要素が必要です。

プログラム可能なメモリスタコンピュータの構築

最初のプログラム可能なメモリスタ コンピュータを構築するために、Lu 氏のチームは、ミシガン大学の電気およびコンピュータ工学の准教授 Zhengya Zhang 氏および Michael Flynn 教授と協力し、メモリスタ アレイと、それをプログラムして実行するために必要な他のすべてのコンポーネントを統合するチップを設計しました。

これらのコンポーネントには、従来のデジタル プロセッサと通信チャネルのほか、アナログ メモリスタ アレイとコンピューターの残りの部分との間のインタープリターとして機能するデジタル/アナログ コンバータが含まれます。

その後、Lu 氏のチームは、UM の Lurie ナノファブリケーション施設でメモリスタ アレイをチップ上に直接統合しました。また、メモリスタアレイのマトリックス構造に機械学習アルゴリズムをマッピングするソフトウェアも開発しました。

チームは、3 つの基本的な機械学習アルゴリズムを使用してデバイスのデモンストレーションを行いました。

  • 情報を分類するために使用されるパーセプトロン。不完全なギリシャ文字を100%の精度で認識できる
  • スパースコーディング、特に画像のデータの圧縮と分類。コンピューターは、一連の画像を再構築し、そのパターンを 100% の精度で識別する最も効率的な方法を見つけることができました。
  • 複雑なデータ内のパターンを見つけるために設計された 2 層ニューラル ネットワーク。この 2 層ネットワークは、乳がん検診データの共通点と相違点を見つけ、各症例を 94.6% の精度で悪性か良性かに分類しました。

商業利用の拡大には課題がある。しかし、ルー氏はこの技術を商業化する計画だ。この研究のタイトルは「効率的な積和演算のための完全に統合された再プログラム可能なメモリスタ-CMOS システム」です。

<<:  ゲイツ氏は人工知能に楽観的だが、グーグルが自動運転車に大きく賭けている理由が理解できない

>>:  IoTの未来が機械学習に依存する理由

ブログ    

推薦する

マイクロソフトは低コストのAIモデルを見つけるために多方面に賭けている

マイクロソフトはOpenAI LPの半分以下を所有していると言われているが、それでもパワーは劣るがよ...

機械学習から学習する機械まで、データ分析アルゴリズムにも優れた管理者が必要だ

[[177274]]写真は、IBM Big Data and Analytics のグローバル研究開...

良いプロンプトを書くときは、これらの 6 つのポイントを覚えておいてください。覚えていますか?

効果的なプロンプトを書くことは、AI とのやり取りを成功させるための鍵となります。優れたプロンプトは...

任正非氏、人工知能の応用について語る:すべてをインテリジェントにしてはいけない、さもないとすべてが失敗する

最近、ファーウェイの新生コミュニティ公式アカウントは、任正非のGTS人工知能応用セミナーでの講演を公...

新浪微博廖博:WAICリアルタイムストリームコンピューティングプラットフォームの成長と発展

[51CTO.com からのオリジナル記事] 7 年間の努力と見事な変貌。 2012年以降、6年連続...

オープンソースの小規模モデルに基づく、GPT-4 を上回る 3 つのエージェント

本当の「三人の靴屋は一人の諸葛亮より優れている」 -オープンソースの小規模モデルに基づく 3 つのエ...

わかりやすい! 「高校数学」勾配降下法の数学的原理を理解する

「時期尚早な最適化は諸悪の根源である。」 —ドナルド・アーヴィン・クヌース、コンピュータ科学者、数...

わずか4つの例から、DeepMindの800億のモデルは本当に学習した

知能の鍵となるのは、簡単な指示を与えられて新しいタスクを実行する方法を素早く学習する能力です。たとえ...

宮崎駿のアニメで新垣結衣を見たことがありますか?このオープンソースのアニメジェネレーターは、写真を数秒で手描きの日本のアニメに変換します

写真を撮るだけで、宮崎駿や新海誠などの日本のアニメ巨匠の手描き風に変換できます。アニメ画像を生成する...

医療業界における人工知能の応用が直面する5つの課題

ヘルスケアにおける人工知能 (AI) の実装に関する課題を特定することで、ヘルスケア提供者は適切な戦...

...

AIチップの過去、現在、そして未来

AIの力は、医療紛争、化学合成、犯罪者識別、自動運転などの応用分野で拡大しています。 AI は現在何...

...

世界的な人口高齢化と労働力不足:ロボットとAIによる解決策

人工知能は近年、産業を変革する可能性を秘めていることから、幅広い注目を集めています。 AI が大きな...