IoTの未来が機械学習に依存する理由

IoTの未来が機械学習に依存する理由

モノのインターネットは膨大な量のデータを生成します。そのデータは、都市が事故や犯罪を予測するのに役立ち、ペースメーカーやバイオチップに関するリアルタイムの情報を医師に提供し、機器や機械の予知保全を通じて業界全体の生産性を向上させ、真にスマートな家電製品を生み出し、自動運転車間の重要な通信を提供します。モノのインターネットがもたらす可能性は無限です。

[[271161]]

接続されたデバイスやセンサーが急速に拡大するにつれて、それらが生成するデータの量は飛躍的に増加し、この膨大な量のパフォーマンス データをどのように分析するかという疑問が生じます。

問題は、IoT がデータを生成する速度に追いつき、洞察を得る唯一の方法が機械学習であるということです。

人工知能と機械学習とは何ですか?

人工知能とは、周囲の世界を認識し、計画を立て、目標を達成するための決定を下すインテリジェントエージェントの研究です。その基礎には、数学、論理学、哲学、確率論、言語学、神経科学、意思決定理論が含まれます。コンピュータービジョン、ロボット工学、機械学習、自然言語処理など、多くの分野が人工知能の傘下にあります。

機械学習は、コンピューターが自ら学習できるようにすることを目的とした人工知能の分野です。機械の学習アルゴリズムにより、機械はデータ内のパターンを識別し、明示的に事前にプログラムされたルールやモデルがなくても、世界を説明して物事を予測するモデルを構築できるようになります。

機械学習はなぜ重要なのでしょうか?

AI は他のどのイノベーションよりも私たちの未来を形作る力を持っており、それを理解していない人はすぐに取り残されることになるでしょう。

数回の AI の冬と「偽りのブーム」の後、データストレージとコンピューター処理能力の急速な発展により、ゲームのルールは劇的に変化しました。

機械学習はすでにコンピュータービジョン(画像やビデオ内のオブジェクトを認識する機械の能力)に大きな進歩をもたらしています。たとえば、数十万枚または数百万枚の写真を収集し、猫の写真にラベルを付けるなど、個別にラベルを付ける必要があるとします。次に、アルゴリズムは、猫の写真すべてに正確にラベルを付けるモデルを構築しようとします。精度が十分に高くなると、機械は猫がどのような外見をしているかを「理解」できるようになります。

たとえば、健康状態を追跡するウェアラブル デバイスはすでに新興産業ですが、近い将来、これらのデバイスは相互に接続し、インターネットに接続して、ユーザーの健康状態を追跡し、健康サービスにリアルタイムの更新情報を提供するデバイスへと進化するでしょう。

身体の指標の 1 つが閾値に達した場合、たとえば心拍数が危険なレベルまで上昇したり、停止したりした場合、医師に通知されます。潜在的な問題を正確に特定するには、データを正常と異常の両方の観点から分析する必要があり、そのためにはリアルタイムのデータ ストリームに基づいて類似点、相関関係、異常を迅速に特定する必要があります。医療サービスに従事する個人が、何千人もの患者のデータをリアルタイムで確認し、緊急情報をいつ送信するかを正しく判断するといったことを実行できるでしょうか。おそらく無理でしょう。既知のパターンをデータから検索するためのコードやルールを書くのは時間がかかり、エラーが多く、以前から知られているパターンを特定することに限られます。

収集されたデータをすぐに分析して、既知のパターンやこれまでに見たことのない新しいパターンを正確に識別するには、このビッグデータを生成して集約できるマシンを使用して、各患者の通常の行動を理解し、深刻な健康上の問題を示す可能性のある異常を追跡、発見、フラグ付けする必要もあります。

モノのインターネットの実現は、膨大かつ増え続けるデータの海に隠された洞察を獲得できるかどうかにかかっています。現在のアプローチでは IoT の規模にまで拡張できないため、IoT の約束された未来を実現するには、日常生活のあらゆる側面を改善する可能性のあるパターン、相関関係、異常を発見する機械学習に依存します。

機械学習は人工知能への道のりの中心であり、あらゆる業界を変革し、私たちの日常生活に大きな影響を与えるでしょう。

<<:  初め!プログラム可能なメモリスタコンピュータが誕生しました!

>>:  ビッグデータはスマートな警察活動の基盤であり、AIは包括的な分析と判断の原動力である

ブログ    

推薦する

コグニティブコンピューティングによる運用・保守は効果的でしょうか?

[51CTO.com からのオリジナル記事] 人工知能は最近とても人気があります。人々の焦点は、A...

GPT をゼロから構築するための 60 行のコード!最も完全な実践ガイドはここにあります

GPT をゼロから構築するには 60 行のコードが必要ですか?最近、開発者が Numpy コードを使...

中飛愛威CEO曹飛氏:自動化からインテリジェンスへ、ドローン検査をよりスマートに

[51CTO.comよりオリジナル記事] 農業、電力、航空写真撮影など、多くの分野でドローンが活躍す...

AI がモノのインターネットをよりスマートにする 5 つの方法

第三者の介入なしに何十億ものデバイスを接続してデータを交換できるため、モノのインターネット (IoT...

テンセントが業界初のAIセキュリティ攻撃マトリックスを発表、リスク排除が辞書を引くのと同じくらい簡単に

近年、人工知能は急速に発展し、家庭、金融、交通、医療などさまざまな分野に深く融合し、人々の生活はより...

Nacos ランダムウェイト負荷分散アルゴリズム

導入Nacos は、クライアントがノードを選択するときに重みベースのランダム アルゴリズムを提供しま...

ロボットが自閉症児の社会スキルの発達を助ける

社会的支援ロボットは、自閉症スペクトラム障害(ASD)の子供たちが適切な行動とコミュニケーションを促...

ロボットはどうやってコーヒーを飲みながら心臓手術を行うのでしょうか?

「2、3年前、アメリカの医師たちが手術室の外に座り、コーヒーを片手にしているのを見ました。彼らはリ...

「AI+」が世界を変える!さまざまな分野における 5 つの主要な AI トレンド

この記事は、公開アカウント「Reading the Core」(ID: AI_Discovery)か...

AIが麻雀をプレイする論文:理系の学生にとって麻雀はこう見える

AI 研究の初期の頃から、チェッカー、チェス、囲碁、ポーカーから StarCraft II に至るま...

人工知能業界が「再始動」:2021年の5つの主要トレンドに関する洞察

2020年12月30日、テンセントYoutuの2020年度年次コミュニケーション会議が海南省で正式に...

機械学習エンジニアは職を失いつつあるが、学習が唯一の解決策であることに変わりはない

[[335970]]ビッグデータダイジェスト制作出典: medium編集者: Hippo採用は凍結さ...

旅行を恥ずかしがる必要はありません。国内の観光地がAIを導入し、スマートな旅行の新たなシナリオを実現

旅行に出かけることは、祖国の美しい川や山を鑑賞し、「詩と遠い場所」を追求することです。 AIの助けに...

アップル、シアトルのAI研究開発施設を拡張へ

海外メディアの報道によると、アップルは最近シアトルの人工知能研究開発センターのオフィススペースを拡大...

...