分散型AIで製造業を強化

分散型AIで製造業を強化

家庭内の新しい仮想アシスタントから、受信トレイから迷惑メールを削除するスパムフィルターまで、人工知能 (AI) は私たちの生活のあらゆる側面の一部になっています。 AI アルゴリズムとそれを駆動する計算能力は向上し続けており、それが私たちの世界を前向きに変えていく能力は疑う余地がありません。実際、2030年までにAIは世界経済に最大15.7兆ドルの貢献をする可能性があると予測されています。

実際、最近調査された米国の組織 1,000 社のうち 5 社に 1 社 (20%) が、2019 年に自社のビジネスに AI を導入する予定です。 PwC の調査では、企業が生産プロセスの中核に AI モデルを導入して運用上の意思決定を強化し、すべてのビジネス機能にわたって将来を見据えたインテリジェンスを提供するケースが増えていることも明らかになりました。

[[271689]]

多くの人にとって、AI へのこの動きは驚くべきことではありません。結局のところ、ロボットは長年にわたりさまざまな製造分野で重要な役割を果たしてきたため、AI のさらなる開発は理にかなっていると思われます。いずれにせよ、人類の未来は、ますます標準化された管理の下で人間と機械が協力して発展していく未来であることに疑いの余地はありません。

未回答の質問

人工知能は大きなビジネスです。2018年の最初の3四半期で、米国のベンチャーキャピタルによるAIへの投資額は66億ドルに達し、前年同期の39億ドルから大幅に増加しました。同時に、AI 企業は魅力的な買収対象となっており、これまでに過去最高の 35 社が買収され、その総額は 38 億ドルに達しています。

将来は有望に見えますが、まだ答えが出ていない疑問がいくつかあります。人工知能がプライバシー、サイバーセキュリティ、雇用、社会的不平等、環境に与える影響については多くの懸念が寄せられています。顧客、従業員、取締役会、規制当局、企業パートナーは皆、同じ質問をしています。「AI を信頼できるのか?」

信頼度

AI はクラウドベースの AI と API を所有する少数の大企業によってますます管理されるようになり、信頼の問題が最前線に立たされ、AI の分散化を求める声が高まっています。メーカーにとっての主な懸念は、集中型モデルが AI 市場の独占につながり、不公平な価格設定とイノベーションの阻害につながることです。

ブロックチェーン、デバイス上の AI、モノのインターネット (IoT) テクノロジーの交差点で生まれた分散型 AI は、この課題を克服し、透明性を高めるのに役立ちます。さらに、相互運用性を確保し、無数の AI 企業間のイノベーションを促進します。 SingularityNET のようなエコシステムは、グローバルな分散型 AI コミュニティ間の連携を強化しています。これはデジタル セキュリティのケース スタディです。さらに重要なのは、このような市場があれば、AI が一般市場に参入した際に、その実際の制御が少数の強力な組織ではなく、貢献者や技術ユーザーに委ねられることが保証されるということです。それは共通の関心を持つコミュニティからのアイデアの集まりであり、ティム・バーナーズ・リー卿のインターネットに対する当初のビジョンに多少似ています。

相互運用性と分散型 AI の推進により、製造業者に力を与える AGI (人工汎用知能) の時代が到来します。たとえば、製造業者が異常を検出し、エンタープライズ リソース プランニング (ERP) で使用できる予測を生成できるようにすることで、将来のプロセスを効果的に改善できます。

新たな規制問題

AI の分散化は他の理由からも不可欠です。厳格なデータプライバシー規制は人工知能に影響を及ぼし、さまざまな国による国境を越えたデータの流れの制限により、その開発を制限しています。

たとえば、昨年導入された欧州の一般データ保護規則 (GDPR) や、カリフォルニア州で近々施行される消費者プライバシー法 (CCPA) では、個人に対して、組織が個人データを収集および使用する方法を確認し、管理する権利が与えられています。どちらの規制枠組みも、消費者の個人データが何らかの形で漏洩した場合、企業に巨額の罰金を科す権限を持っています。 AI は単なる知能の問題ではなく、データの問題でもあります。分散型 AI エコシステムは、企業がデータベースを国境内に保存するのに役立ち、それによってコンプライアンスを確保し、地域間の規制の変更に迅速かつ容易に対応できるようになります。

持続的な成長と競争優位性の維持

多くの企業が業務の改善と顧客体験の向上のために AI を活用し始めています。 2019 年には、企業全体に AI を導入することで最大の価値が生み出されることをビジネス リーダーが認識したことにより、AI の導入が拡大しました。分析、ERP、IoT、ブロックチェーンなどの他のテクノロジーと統合すると AI の機能がさらに強化されるため、この 2 つは密接に関連しています。

サプライチェーン全体に AI を導入することで、企業は従来手作業で実行していた多くのタスクから解放されます。しかし、分散型 AI を構築するという概念は、変化、競争、適応、選択という自然なプロセスをサポートできる特定の潜在的なアプローチも抑制します。

分散型 AI は、開発者コミュニティが革新的なアルゴリズムとソリューションを構築できる環境を作り、メーカーが競争上の優位性を開発、維持、さらには獲得できるようにすることで、この困難な問題の解決に役立ちます。

<<:  わずか60行のコードでディープニューラルネットワークを実装する

>>:  ビル・ゲイツ:AIが最大の影響を与えるには何十年もかかる

ブログ    
ブログ    

推薦する

東南大学が世界初のLK-99ゼロ耐性テストに成功しました!常温超伝導が再び出現、人類史は転換点に近づいている

室温超伝導を再現する実験は、完全に爆発的な成長期に突入しました!今朝午前1時過ぎ、東南大学の物理学教...

次元削減アルゴリズムについて: PCA主成分分析

機械学習の分野では、生データから特徴を抽出する際に、高次元の特徴ベクトルが得られることが多いです。こ...

米国は中国のAI企業に対する制裁で目的を果たせなかったのか?

[[278497]]中国の人工知能企業数社は、ある日、自分たちがこのようなユニークな形で世界の注目...

我が国はすでに「人工知能」でトップを走っています!なぜ米国は5日後にようやく強く否定し始めたのか?

[[429481]]最近、元国防総省の最高ソフトウェア責任者は、人工知能に関して、米国は今後15年...

人工知能は人間の文化を継承するが、人間の偏見も受け継いでいる

テクノロジーは既存の人間文化の延長です。テクノロジーは人類の知恵を広げた一方で、人々の偏見や差別も受...

...

ロボットは痛みを恐れる:これは技術的な進歩なのか、それとも倫理的な課題なのか?

時代の発展と科学技術の進歩に伴い、ロボットは人々の生活の場にますます入り込んできましたが、私たちの従...

ディープフィードフォワードシーケンスメモリニューラルネットワークに基づく大語彙連続音声認識

【51CTO.comオリジナル記事】まとめ本研究では、ディープフィードフォワードシーケンスメモリニュ...

アルゴリズム | 再帰の深い理解、あなたは再帰を誤解しています

再帰は、プログラミングの本で説明するのが最も難しい部分である魔法のアルゴリズムです。これらの本では通...

科学者は、指示に従って芸術作品を制作する「絵画」ロボットの群れを作った

ほとんどの人が協働型群ロボットを想像するとき、通常は捜索救助活動などの用途を思い浮かべます。しかし、...

今日から彼は、黄仁訓院士です!米国工学アカデミーの2024年会員リストが発表され、清華大学の黄一東氏らが外国人会員に選出される

本日、2024年度の米国工学アカデミーの新会員リストが発表されました! Nvidiaの黄氏が選出され...

AR/VRが製造業の自動化とロボット工学の発展を促進する方法

この記事では、AR/VR テクノロジーがロボットにどのように貢献し、工場や産業にどのようなメリットを...

...

NetEase Cloud Music 推奨システムのコールド スタート技術

1. 問題の背景: コールドスタートモデリングの必要性と重要性コンテンツプラットフォームとして、QQ...

英国はAI大規模モデルの分野で利用するためのスーパーコンピュータの開発に2億2500万ポンドを投資する予定

英国政府は11月2日、国の人工知能能力をさらに強化するため、人工知能研究資源への投資を2023年3月...