AIによる顔の改造の一般的な手法の詳細な説明

AIによる顔の改造の一般的な手法の詳細な説明

最近また「AI変顔」が流行っていますね。 Leiphone.com(公式アカウント:Leiphone.com)AIテクノロジーレビューは、これまでのスタイルを踏襲し、近年の重要なAIの顔を変える技術を技術的な観点から簡単にレビューします。

サイクルGAN

Cycle GAN は、あらゆる顔変換の試みの中で重要な初期の試みであると言えます。敵対的生成ネットワーク(GAN)のトレンドでは、ソースカテゴリとターゲットカテゴリのサンプルが与えられれば、GANは2つのカテゴリ間の変換関係を簡単に学習できることが分かりました。これは、同じ風景写真を冬から夏へ、馬からシマウマへ変換するなど、「画像から画像への変換」問題に自然に適用できます。Cycle GANの核心的な考え方は、ソースからターゲットへ、そしてソースからターゲットへ変換できれば、モデルが2つのカテゴリ間の変換関係をうまく学習したとみなすことができ、変換された画像の品質もより良く保証されるというものです。しかし、Cycle GAN の顔を変える効果はあまり良くありません。結局のところ、これはすべてのカテゴリの画像に共通する普遍的な方法です。

紙の住所

フェイスツーフェイス

Face2Face は「標準的で規則的な」試みと言えます。dlib と OpenCV の助けを借りて、顔検出器はまずソース画像内の顔を検出し、顔上の主要なランドマークを見つけ、次に顔の pix2pix 変換モデルを使用して主要なランドマークをターゲットの顔画像に変換します。この方法ではディープラーニングを活用する余地があまりないため、効果は中程度であると考えられます。

ブログアドレス

その後、NVIDIA とカリフォルニア大学バークレー校の研究者が pix2pix を改良して pix2pixHD を作成しました。これにより、元の pix2pix モデルのマルチカテゴリの一般的な機能を維持しながら、顔画像の生成が改善されました。紙のアドレス、オープンソースのアドレス。

ディープフェイク

最も人気があり、最も広く使用されているディープラーニングの顔変更モデルは、間違いなく DeepFakes です。 2017年末に登場したDeepFakesは、ディープオートエンコーダーデコーダーモデル(Autoencoder-Decoder)です。ソースとターゲットの人物の写真数百枚(多いほど良い)でモデルをトレーニングし、それぞれ2人の顔を認識して復元します。最後に、ソース人物の写真とターゲット人物のデコーダーを使用して変換を完了できます。ビデオからビデオへの変換も適切にサポートされています。

DeepFakes の欠点は、小さなサンプルでは機能しないということです。つまり、2 人の顔を 1 枚または 2 枚の写真に置き換えることは不可能です。また、モデルのトレーニング プロセスには多くのリソースが必要です。

DeepFakes が初めて公開されたとき、それは技術愛好家の間でのやり取りに限定されており、正式な論文は発表されていませんでした。しかし、ガル・ガドットの顔が入れ替わるアニメーション画像が突然大きな注目を集めた。今年初めに話題となった「ヤン・ミの顔を入れ替えたチュー・イン」動画も、おそらくこの手法で実現されたものだ。なぜなら、DeepFakesのエンコーダーは、十分なトレーニングを経れば、実際にどんな入力顔(チュー・インの顔など)でも高品質で忠実度の高いターゲット顔(ヤン・ミの顔)に変換できるからだ。

DeepFakes の GitHub アドレスは https://github.com/deepfakes/faceswap です。現在も更新とアップグレードが続けられています。その後、TensorFlow に慣れていない初心者ユーザーでも試せるように、FakeApp というデスクトップ アプリケーションがリリースされました。この記事の詳細な分析については、

一枚の写真で顔の動きを変える

DeepFakes スタイルの「対象画像内の顔を別の顔に置き換える」方法は、将来的にサンプル数やリソース要件の削減が困難になる可能性があるため、顔画像を与えて、画像内の人物を与えられた動作に合わせて「動かす」という別のアイデアがあります。サムスン・モスクワAI研究センターとスコルコボ科学技術研究所が今年5月に発表した論文は、良い結果をもたらした。実際の人物の写真であるだけでなく、絵画の中の人物が自然に話すようにすることもできます。

紙の住所

上記の論文とブログはPDF形式でパッケージ化されています

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式サイトにアクセスして許可を申請してください。

<<:  人工知能はサイバーセキュリティにとって役立つのか、それとも脅威となるのか?

>>:  ByteDance アルゴリズムの面接の質問、解けますか?

ブログ    
ブログ    

推薦する

AI は言語をより早く習得するために何ができるでしょうか?

新しい言語を学ぶことは間違いなく挑戦です。特に 18 歳以上の人にとっては、これまで触れたことのない...

負荷分散アルゴリズムを理解していますか?

[[286998]]負荷分散アルゴリズムには、ポーリング、ランダム、最小接続の 3 つがあります。...

...

ウー・ジアン:nEqual は、優れたユーザー エクスペリエンスで企業がスマートなビジネスを構築できるよう支援します

[原文は51CTO.comより] 1月中旬に開催されたAdMaster再編メディアカンファレンスで、...

...

ChatGPTはついにウェブを検索できるようになり、コンテンツは2021年9月以前のものに限定されなくなりました

米国時間9月28日水曜日、人工知能研究企業OpenAIは、同社のチャットボットChatGPTがMic...

市場情報調査 | モノのインターネット市場における人工知能

現在、機械学習とディープラーニング技術は、IoT 向け人工知能の世界市場で 5.7% の CAGR ...

TensorFlow でトレーニングしたモデルを保存および復元する方法

ディープ ニューラル ネットワーク モデルの複雑さが非常に高い場合、保有するデータの量、モデルを実行...

PaddlePaddle と TensorFlow の比較分析

この記事では主に、フレームワークの概要、システム アーキテクチャ、プログラミング モデル、分散アーキ...

今日の人工知能はすでに販売業界に混乱をもたらしている

人工知能と機械学習は現在では導入が容易であり、現在実行されている反復的なタスクやプロセスの多くを自動...

人工知能が私たちの日常生活を変える5つの方法

人工知能はもはや未来的な概念ではなく、私たちの日常生活に欠かせないものとなっています。私たちが目覚め...

AI に役立つ 7 つの優れたオープンソース ツール

ビジネスニーズを予測するには、AI を活用し、研究開発を新たなレベルに引き上げる必要があります。この...

海外メディア:アップルは2025年までに完全自動運転車を発売する可能性

アップル社が2025年までに完全自動運転車を発売する計画だとブルームバーグが報じたことを受け、同社の...

AI時代の企業の変革とイノベーション

人工知能は、私たちの生活、仕事、学習に影響を与えるだけでなく、企業の運営、戦略、組織にも影響を与える...

ヘルスケアにおけるAI導入が難しい理由

私たちはほぼ毎日、人工知能と医療業界におけるその応用に関する最新の記事を読んでおり、医療機関などのク...