人工知能に関する長期的および短期的な懸念

人工知能に関する長期的および短期的な懸念

人工知能(AI)技術の発展により、いつか「超人」的なAIが出現する日は来るのでしょうか?もしそうなれば、それは人類史上最も爆発的な出来事となるのでしょうか?

超人AIとは、SF映画や小説に描かれるような、人間に対抗する強力なエネルギーと知覚力を持つロボットではありません。それどころか、超人AIは私たちが作り出す、より多くの情報を吸収して未来を観察し、現実世界で人間の意思決定能力を超える機械です。一度形成されると、それが人間にとって祝福となるのか、呪いとなるのかは予測できません。

カリフォルニア大学バークレー校のコンピュータサイエンス教授、スチュアート・ラッセル氏は、AIは超人的になる可能性があるので、超人的になる前にAIを止めなければならないと考えている。なぜそうなるのかについては、現在のAIの開発方向が間違っているためだとラッセル氏は考えている。

今日の「標準的な」AI は、操作を通じて目標を達成するインテリジェントなマシンです。しかし、機械には独自の目標はありません。目標は私たち人間が与えるものです。私たちは機械を作り、目標を与え、動かします。機械が賢ければ賢いほど、目標を達成しやすくなります。私たちが与える目標が完全かつ正しい限り、これらすべては完璧です。目標が間違っていて、機械の知能が人間の知能よりも高ければ、結果は悲惨なものになるでしょう。

現在、AI知能の発展はまだ初期段階にあり、生活の些細な事柄にのみ使用される場合、欠点が生じるでしょう。将来、超人的なAIが必ず世界情勢に使用され、間違いは災害となるでしょう。例えば、超人的なAIを使って地球の天候を制御し、CO2排出量を産業革命以前のレベルまで削減することを目標とします。この目標を達成するために、超人的なAIは地球の人口をゼロにすることと解釈するかもしれません。マシンの電源を切りますか?その時の AI は、スイッチをオフにしたり、マシンのプラグを抜いたりすることを許可しません。

超人的なAIを防ぐために、ラッセル教授は新しい概念を提唱しました。AIは「利益をもたらす」機械になり、操作を通じて「私たち」の目標を達成する必要があります。「私たち」は広い概念であり、すべての人間の優れた内包を指します。これは漠然とした不確実な目標であり、不確実性は安全なインテリジェントシステムの重要な機能です。つまり、機械の知能がどれだけ進歩しても、機械は常に人間を尊重し、人間に要求を出し、間違いを受け入れ、自らシャットダウンすることを許さなければならないのです。

もちろん、このような新しい AI が実現するまでにはまだまだ長い道のりがある。ワシントン大学のコンピューター教授であるオーレン・エツィオーニ氏は別のアプローチを提案した。同氏は、現在の AI は知性からは程遠いと述べた。高く評価されている囲碁でさえ、人間が問題を設定し、それを解くように設計されたにすぎない。囲碁の名人に対する AlphaGo の勝利は、機械ではなく、DeepMind の人々の知恵によるものだ。しかし、「超知能」が人類に及ぼす危険性についての議論が高まる中、彼は警告の指標としていくつかの「カナリア」を設置した。

100年以上前、炭鉱に石炭を掘りに行く人々はカナリアを連れて行きました。カナリアは一酸化炭素やその他の有毒ガスに非常に敏感です。カナリアが死んだら、それは炭鉱災害の警告サインでした。 AI は一夜にして超知能に進化するわけではありません。カナリアが落ちて警告灯が赤になったら、それを制御する方法を見つけるのに遅すぎることはありません。エツィオーニ教授が提唱する3つの警告カナリアは、計画学習問題、自動運転車、ロボット医師です。

  • 学習問題の計画とは、問題の説明、問題の単純化、データの設計、学習能力など、機械が学習する問題を提起することとも言えます。これらのタスクは、AI はもちろん、人間にとっても簡単ではありません。このカナリアが落ちる兆候はありません。
  • 自動運転車はどんどん増えていますが、理想には程遠いです。道路を横断する車椅子の人に遭遇するなど、特殊な状況ではAIが制御を失い、災害を引き起こす可能性があります。自動運転車の課題は、人間と車両が相互作用する予測不可能な現実世界の環境において、命を救う決定をリアルタイムで下すことです。 自動運転車は徐々に増えていき、事故も減っていくでしょうが、人間と同じレベルの運転ができるまでには、カナリアは落ちてしまうでしょう。
  • ロボット医師は古くから存在しています。病気を診断できるロボットや、医療画像を正確に解釈できるロボットもいますが、これは医師の仕事のほんの一部にすぎません。 AI医師が患者と面談し、患者の病状の合併症を考慮し、他の医師に相談し、人間の医師のように患者を理解し、幅広い業務をこなすことができれば、カナリアは頭を下げるチャンスを得るだろう。

前述の2人の学者は、AIの過度な発展を防止し監視するためにそれぞれ異なる方法を用いていますが、どちらも長期的な検討事項です。しかし、AIは今や私たちの日常生活に入り込んでいます。入学申請、就職活動、昇進、融資、さらには犯罪者の判決など、以前は人間が決めていた多くのことが、今ではAIによって決定されることが多くなっています。こうした人生の決断には、人間的要素が多すぎます。公平性を確保するために、私たちは AI を使って人間の影響を減らしています。

AIは人間によって設計されており、人間の偏見がAIの偏見にも反映されています。その結果、一部の人々は不平等に扱われており、これはAIが今解決しなければならない差し迫った問題となっています。幸いなことに、この問題は発見され、解決策を研究する学者が増えていますが、AIに公平性を組み込むには、関係する領域が多すぎてさまざまな分野の協力が必要であり、「公平性」を定義することが別の課題になります。これは AI の問題ではなく、人間の問題です。

<<:  エンタープライズ ナレッジ グラフが直面している機会、課題、解決策

>>:  AIの次の目的地はどこでしょうか?

ブログ    
ブログ    
ブログ    

推薦する

新しい世代の AI 人材はどこから生まれ、どこに向かうべきでしょうか?

[[443279]]この記事はLeiphone.comから転載したものです。転載する場合は、Lei...

ボストン・ダイナミクスの最新倉庫ロボットは1時間あたり800個のレンガを移動できる

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

アルゴリズムは AI の進歩の原動力となることができるでしょうか?

2006年以降、ディープラーニングに代表される機械学習アルゴリズムは、マシンビジョンや音声認識など...

魔法のレコメンデーションシステム:6億人のユーザーの音楽シーンを考えるAI

[51CTO.comより] NetEase Cloud Musicは音楽愛好家が集まる場所です。C...

Google DeepMind が証明: GPT-4 の最終結果は人類の知恵の集大成です! Transformerモデルはトレーニングデータを超えて一般化できない

Transformer モデルが事前トレーニング データの範囲を超えて新しい認知と能力を一般化できる...

...

たった 14 ステップ: Python 機械学習をゼロからマスターする (リソース付き)

Python は現在、機械学習で最も人気のある言語であると言っても過言ではなく、オンラインでも膨大...

...

AI探偵が事件を解決する3つの秘策

[[241150]]画像出典: Visual China今年のコナン映画は中国でも公開されるそうです...

AIが認知症患者の自立した生活にどのように役立つか

[[279905]]写真はインターネットから照明や音楽を Alexa や Siri などの音声制御テ...

2024年のトレンド: 時系列データと人工知能の融合アプリケーション

今日のデータ主導の世界では、競争上の差別化を図ることが成功の鍵となります。この目標を達成するために、...

CVPR 2017 論文の解釈: フィーチャーピラミッドネットワーク FPN

論文: 物体検出のための特徴ピラミッドネットワーク論文アドレス: https://arxiv.org...

AI技術のダークサイド:犯罪者と人工知能の関係

[[248661]]ビッグデータダイジェスト制作編集者: DonFJ、Jiang Baoshang機...