AlphaFold2 の原理: 注意メカニズムが畳み込みネットワークに取って代わり、予測精度が 30% 以上向上

AlphaFold2 の原理: 注意メカニズムが畳み込みネットワークに取って代わり、予測精度が 30% 以上向上

[[412540]]

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

最近、DeepMind が AlphaFold2 をオープンソース化し、再び学界に波紋を巻き起こしました。

つまり、かつては一般の研究者が解明するのに数年かかっていたタンパク質構造が、AlphaFold2 を使用すればわずか数時間で計算できるようになったのです。

では、AlphaFold2 はどのようにしてこのような強力な機能を実現しているのでしょうか?

DeepMindチームは詳細な情報をNature誌に公開した。

それでは、AlphaFold2 の魔法がどのように実現されるかを見てみましょう。

畳み込みはなくなり、注目が集まる

論文の中で研究者らは、AlphaFold2はAlphaFoldとは全く異なる新しいモデルであると強調した。

実際、それらは異なるモデル フレームワークを使用しており、これが AlphaFold2 の精度が飛躍的に向上できる主な理由です。

AlphaFold のこれまでの畳み込みニューラル ネットワークはすべてAttentionに置き換えられました。

なぜこれをするのですか?

まず、AlphaFold がどのように動作するかを理解する必要があります。

これは主に、タンパク質内の各アミノ酸ペア間の距離分布と、それらを結ぶ化学結合間の角度を予測し、すべてのアミノ酸ペアの測定値を 2D 距離ヒストグラムにまとめます。

次に、畳み込みニューラル ネットワークを使用してこれらの画像を学習し、タンパク質の 3D 構造を構築します。

△AlphaFoldのメインアーキテクチャ

しかし、これは予測に対する局所的なアプローチであり、タンパク質構造情報の長期的な依存性を無視する可能性があります。

Attention の特性は、まさにこの欠点を補うことができます。これは、人間の注意を模倣し、複数の詳細に同時に焦点を合わせることができるネットワーク アーキテクチャです。

これにより、フレームワークの予測結果がより包括的かつ正確になります。

CASP13では、AlphaFoldの予測精度は60ポイント未満でした。

しかし、CASP14では、AlphaFold2によって精度が直接92.4/100に向上しました。

グラフネットワーク + 注意

具体的には、AlphaFold2 は主に多重配列アライメント (MSA) を使用して、タンパク質構造と生物学的情報をディープラーニング アルゴリズムに統合します。

主にニューラル ネットワークEvoFormer構造モジュールの2 つの部分で構成されます。

EvoFormer では、構造予測は主にグラフ ネットワーク多重配列アライメント(MSA) を組み合わせることによって実現されます。

グラフ ネットワークは、物事の相関関係をうまく表現できます。ここでは、異なるアミノ酸間の距離を表すために、タンパク質関連情報のグラフを構築できます。

研究者らは、Attention メカニズムを使用して、アミノ酸間の関係グラフを処理するための特別な「三角形の自己注意メカニズム」を構築しました。

△三角形の自己注意

次に、このステップからの情報を多重配列アライメントと組み合わせました。

多重配列アライメントの主な目的は、同じ残基の部位を同じ列に配置し、異なる配列間の類似性を明らかにし、それによって異なるタンパク質間の構造と機能の類似性を推測することです。

計算されたアミノ酸関係は MSA と情報を交換し、空間的および進化的関係のペア表現を直接推測できます。

すべての原子の3D構造を予測する

アーキテクチャの 2 番目の部分は構造モジュールであり、その主な役割は、EvoFormer によって取得された情報をタンパク質の 3D 構造に変換することです。

△構造モジュール

ここで研究者らは、タンパク質の各部分を個別に計算できる「不変点注意」メカニズムと呼ばれる注意メカニズムも使用しました。

ある原子を原点として3D参照フィールドを構築し、予測情報に従って回転・平行移動し、構造フレームワークを取得します。

△不変点の注目

次に、Attention メカニズムがすべての原子を予測し、最終的に非常に正確なタンパク質構造を要約します。

さらに研究者らは、AlphaFold2 が「エンドツーエンド」のニューラル ネットワークであることも強調しました。

最終的な損失を出力結果に繰り返し適用し、出力結果を再帰的に適用して、正しい結果に継続的に近づきます。

そうすることで、追加のトレーニングを削減できるだけでなく、予測される構造の精度も大幅に向上します。

タンパク質の折り畳みの謎を解く希望をもたらす

Alphafold2 の出現により、タンパク質と分子の結合確率をより正確に予測できるようになり、新薬の研究開発の効率が大幅に向上します。

Alphafold2 のオープンソースは科学コミュニティをさらに発展させるでしょう。

DeepMindは現在、スイスのいくつかの研究チームと協力して、タンパク質構造を予測することで医薬品の研究を行っているとみられる。

実際、Alphafold2 予測プログラム自体を研究することで、タンパク質構造の折り畳みの原理を探求する希望も生まれます。

シカゴ大学の計算生物学者ジンボ・シュー氏はこう語った。

これらのツールはオープンソースであるため、科学コミュニティはそれらに基づいてさらに強力なソフトウェアを開発できます。

論文の宛先:
https://www.nature.com/articles/s41586-021-03819-2_reference.pdf

補足資料:
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03819-2/MediaObjects/41586_2021_3819_MOESM1_ESM.pdf*

<<:  ICML賞を受賞したばかりの機械学習の専門家マックス・ウェリング氏がマイクロソフトに入社し、分子シミュレーションに注力

>>:  人工知能による画像認識では、データのラベル付けはどのように機能するのでしょうか?

ブログ    
ブログ    

推薦する

ネットセレブ列車は強制的に停止させられた。ドローンの操縦はどれほど難しいのか?

最近、「重慶の人気列車がドローンに衝突され停止」する動画がインターネット上で広く出回っている。 [[...

音声認識を開発する方法

ディープラーニング技術を用いた自然言語の深い理解は、常に注目されてきました。自分で音楽を調べる必要が...

2021年の人工知能と機械学習の5つのトレンド

この流行は明らかに触媒となり、オフィスからリモートワークへ、製品の革新から消費者の嗜好まで、ビジネス...

LSTM、GRU、ニューラルチューリングマシン: ディープラーニングで最も人気のあるリカレントニューラルネットワークの詳細な説明

リカレント ニューラル ネットワーク (RNN) は、ネットワークに追加の重みを追加してネットワーク...

本当に知っておくべき 10 の AI テクノロジートレンド

人工知能技術のトレンドは人類を前進させています。デジタル変革はあらゆる業界に広がり、人工知能は科学者...

GitHub、企業向けAI搭載コーディングアシスタント「Copilot Enterprise」をリリース

GitHub の新製品「GitHub Copilot Enterprise」は、企業独自のコードベー...

「思考スタンプ」が実現!中国とアメリカの科学者33人の最新の成果:光を使って脳の認知を変える

[[404075]]この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI...

中国 NeurIPS の著者の 54% が米国へ:ケンブリッジ AI パノラマ レポートが発表

NeurIPSに受理された論文のうち、著者の29%は中国の大学で学士号を取得していますが、そのうち...

...

物流業界における人工知能の応用と発展の動向の概要

北京科技大学機械工学部物流工学科羅磊、趙寧人工知能(AI)は、人間の知能をシミュレート、拡張、拡大す...

...

ChatGPTを使った学生の不正行為を防ぐため、一部の大学教授は紙ベースの試験と手書きのエッセイへの復帰を検討している。

8月14日、人工知能(AI)の発展は教育に新たな課題をもたらしました。フォーチュン誌の最近の報道に...

...

現在世界で最も重要な古典的アルゴリズムトップ10

今日の世界では、数え切れないほどの古典的なアルゴリズムが発見または作成されてきました。最も価値あるア...

Python でよく使われるアルゴリズム - 貪欲アルゴリズム (別名 greedy algorithm) をご存知ですか?

貪欲アルゴリズム (または貪欲アルゴリズム) とは、問題を解決するときに、その時点で適切と思われる選...