Google AIが新世代の「物体検出」システムをリリース

Google AIが新世代の「物体検出」システムをリリース

[[319182]]

3月19日、Google BrainとAIチームは今週、EfficientDet(効率的検出)と呼ばれる人工知能システムをリリースしました。

このシステムは計算量を削減し、より効率的な検出ターゲットを取得します。

このシステムの開発者らは、CPU や GPU と併用した場合、YOLO や AmoebaNet などの他の一般的な検出モデルよりも高速なパフォーマンスも実現できると述べています。

EfficientDet は、物体検出に関連する別のタスクでも優れたパフォーマンスを達成しました。 PASCAL を使用してオブジェクトを視覚化し、データセットをトレーニングしてセマンティック セグメンテーション実験を実行します。

EfficientDet は、Coral ボード シングルボード コンピューター向けに昨年提供された一連の高度なオブジェクト検出モデルである EfficientNet の更新バージョンです。 Google のエンジニアである Mingxing Tan、Ruoming Pang、Quoc Le の 3 人は、昨年秋に初めて発表した論文で EfficientDet の詳細を説明したが、日曜日にその論文 (コードを含む) を改訂し、更新した。

「精度と効率を最適化することを目標に、使用要件を満たすさまざまなモデルを開発したいと考えています」と、物体検出のためのニューラルネットワークアーキテクチャの設計を研究した論文には記されている。

物体検出をスケーリングする既存の方法は、精度を犠牲にしたり、リソースを大量に消費したりすることが多いと著者らは述べている。 EfficientDet は、「すべてのバックボーン、特徴ネットワーク、ボックス/クラス予測ネットワークの解像度、深度、幅を同時にスケーリング」することで、エッジまたはクラウドでオブジェクト検出を展開するための、より安価でリソースをあまり消費しない方法を可能にします。

「モデルのサイズが巨大で計算​​コストが高いため、モデルのサイズとレイテンシが厳しく制約されるロボット工学や自動運転車などの多くの現実世界のアプリケーションへの導入が妨げられている」と論文には書かれている。 「これらの現実世界のリソース制約を考慮すると、物体検出においてモデルの効率性がますます重要になります。」

EfficientDet の最適化は、Tan と Le による EfficientNet に関するオリジナルの研究に触発されています。バックボーン ネットワークとフィーチャ ネットワークの結合複合スケーリング手法を提案します。このうち、特徴ネットワークとしては双方向特徴ピラミッドネットワーク(BiFPN)が使用され、バックボーンネットワークとしてはImageNet事前学習済み特徴ネットワークが使用されます。

EfficientDet は、入力エッジが 1 つだけのノードを削除してクロススケール接続を最適化し、よりシンプルな双方向ネットワークを作成します。また、効率性とシンプルさで知られるオブジェクト検出器の一種であるシングルステージ検出器パラダイムにも依存しています。

「我々は、特徴融合中に各入力に追加の重みを追加して、ネットワークが各入力特徴の重要性を学習することを提案する」と論文には書かれている。

これは Google からの最新の物体検出ニュースです。Google の物体検出用 Google Cloud Vision システムは最近、公開 API から男性と女性のラベルを削除しました。

KHARI JOHNSON 著

<<:  顔認識技術が「無人小売」時代の到来を牽引

>>:  IoTミツバチ:私たちの未来を救う技術

ブログ    
ブログ    

推薦する

将来の知能社会に向けた人工知能の基礎教育の強化

人工知能の基礎教育を強化することは、将来の社会の発展に備えるための避けられない選択であり、要件です。...

機械学習に基づく自動文書ラベル付けグラフ技術

このコースでは、ナレッジグラフ技術の開発動向、機械学習に基づくラベルグラフ技術のアイデア、主要技術の...

OpenAIの競合InflectAIがマイクロソフトとビル・ゲイツの支援を受けて13億ドルを調達

OpenAIの競合企業Inflection AIは最近、Microsoft、リード・ホフマン、ビル・...

アルゴリズム博士の平均月収は4万元、データ可視化スキルは世界中で需要が高い

​​2020年現在、ほとんどの人にとって「ビッグデータ」という言葉に馴染みがないということはないでし...

GPT-4を直接使用してエアコンを制御する、マイクロソフトのトレーニング不要の手法によりLLMは産業用制御に向けて前進

大規模言語モデル (LLM) 技術が成熟するにつれて、その適用範囲が拡大しています。インテリジェント...

...

...

プログラマーは「自殺」している。人工知能が進化し続ける中、人間は何をすべきか?

中国、日本、韓国の囲碁名人数十人がこのゲームに挑み、アルファ碁は1敗もせずに60連勝した。その後、世...

AI プロジェクトの 85% が失敗します。何が悪かったのでしょうか?

[[441161]]最近のガートナー社の 2 つのレポートによると、AI および機械学習プロジェク...

...

AIを活用して史上最も変動の激しい資産クラスを制御する

私たちは現在、歴史上最も激動の経済、技術、社会の時代を生きています。年初から拡大し始めた新型コロナウ...

OpenAI、ChatGPTのトレーニングで何百万ものユーザー情報を盗んだとして訴訟

有名モデルChatGPTの進路に、ちょっとした紆余曲折が訪れ始めた。カリフォルニアに拠点を置く法律事...

...