Python 向けトップ 3 機械学習ライブラリ

Python 向けトップ 3 機械学習ライブラリ

[51CTO.com クイック翻訳] 難しいデータサイエンスを習得しなくても、機械学習の世界で成功できることがわかりました。もちろん、この旅には、さまざまなビッグデータ、人工知能、ディープラーニング、大規模な統計および分析ツールの助けが必然的に必要になります。

[[184507]]

本日の記事では、データ サイエンスの探索をよりスムーズに行うのに役立つと思われる、最も人気のある Python 機械学習ライブラリ 3 つを紹介します。

1. テアノ

約 10 年前に誕生した機械学習ソリューションである Theano は、現在、機械学習の分野で最も広く使用されている CPU および GPU 数学コンパイラの 1 つです。

論文「Theano: 高速な数式計算のための Python フレームワーク」では、著者らがこのライブラリの包括的な概要を説明しています。 「Theano には、機能性を高めるためのパッケージがいくつか含まれています。さまざまな特定の目標に対応するのに十分な高レベルのユーザー インターフェイスを提供します」と論文では説明しています。「その中でも、Lasagne と Keras は、ディープラーニング モデルとトレーニング アルゴリズムのアーキテクチャ表現を数式として効果的に簡素化できます。実際、確率的プログラミング フレームワーク PyMC3 は、Theano を使用して式を自動的に生成し、生成された C コードをすばやく実行します (Keras と Lasagne は、TensorFLow と Theano の上で同時に実行されます)。」

Theano は現在、GitHub 上で 25,000 件を超えるコミットと 300 人近くの貢献者を抱えており、フォークの数は 2,000 件に近づいています。

2. テンソルフロー

TensorFlow は、データフローグラフを使用した数値計算用のオープンソース ライブラリです。オープンソースの分野では比較的新しいプロジェクトですが、Google が主導するこのプロジェクトにはすでに 15,000 件近くのコミットと 600 人を超える GitHub 貢献者がおり、モデル ライブラリの評価は 12,000 個の星に近づいています。

最初のオープンソース年鑑では、TensorFlow が 2016 年の最も価値のあるフォーク プロジェクトとして選ばれました。 TensorFlow は、*** の「Open Source Yearbook」にも何度も登場しました。 TensorFlow をベースとした Magenta プロジェクトは、機械知能を芸術分野と結び付け、音楽や芸術の創作にそれをどのように活用するかを模索し、アーティスト、プログラマー、機械学習研究者の混合コミュニティを確立しようとしています。また、Tensorflow は複数のフロントエンド言語をサポートしていますが、Python のサポートが最も優れています。Python は、2017 年のホットなプログラミング トレンド ランキングにも掲載されています。

TensorFlow 1.0 は今年 2 月中旬にリリースされました。 Google は開発者ブログで次のように書いている。「TensorFlow は登場してまだ 1 年しか経っていませんが、すでに研究者、エンジニア、アーティスト、学生、その他のユーザーがさまざまなタスクを完了するのに役立っています。その範囲は、言語翻訳、皮膚がんの早期診断、さらには糖尿病患者の二次失明の予防にまで及びます。」

3. サイキットラーン

このソリューションは NumPy、SciPy、Matplotlib に基づいており、Spotfiy のエンジニアが音楽の推奨に使用しています。 OkCupid では、マッチング システムの評価と改善を担当しています。 Birchbox では、スタッフが scikit-learn を使用して新製品の開発をサポートする方法を検討しています。

Scikit-learn には現在、GitHub 上で約 22,000 件のコミットと 800 人の貢献者がいます。

[51CTOによる翻訳。パートナーサイトに転載する場合は、元の翻訳者と出典を51CTO.comとして明記してください]

<<:  相関ルール推奨アルゴリズムの原理と実装

>>:  AI、機械学習、ディープラーニングの違いは何ですか?

ブログ    
ブログ    
ブログ    

推薦する

新しい機械学習システムがロボットに社会的なスキルを与える

ロボットは大学のキャンパスに食べ物を配達したり、ゴルフコースでホールインワンを達成したりすることがで...

...

人工知能は暗記学習を「終わらせる」ことはない

人工知能に代表される新技術は、知識記憶を主眼とする中国の教育モデルの優位性を覆すことになるのだろうか...

PyTorch でリカレントニューラルネットワークを実装するにはどうすればいいですか?

[[189593]] Siri から Google 翻訳まで、ディープ ニューラル ネットワークは...

人工知能によりデータセンターの設計が再考される

AI が企業で大規模に導入されるにつれて、データセンターのワークロードのより大きな割合が AI によ...

スタンフォード大学が長いテキストをよりスムーズに生成する時間制御方式を導入、その論文がICLR 2022に選出される

近年、GPT-2 を含む大規模言語モデルはテキスト生成において大きな成功を収めています。しかし、大規...

Google検索は非常に勤勉で、そのコアアルゴリズムは毎日変化しています

Googleの検索事業責任者アミット・シンガル氏は最近、Google+に記事を掲載し、過去1年だけで...

マスク氏はオープンAIの主任科学者に質問した。「いったい何を見てそんなに怖くなったのですか?」

2015年11月27日、イーロン・マスクはイリヤ・スツケヴァー氏がOpenAIの主任科学者として参...

MITチームの最新研究により、LiDARと2Dマップのみでエンドツーエンドの自動運転が実現

自動運転に関して言えば、当然のことながら「視覚アルゴリズム」派と「ライダー」派の論争が思い浮かびます...

調査によると、人工知能ソフトウェア市場は2025年までに370億ドルに達すると予想されている。

Forrester は、2025 年までの市場規模をより現実的に把握するために、AI ソフトウェア...

人工知能認知学習—教育の未来?

人工知能(AI)はどこにでもあります。スマートセンサーを使用して素晴らしい写真を撮影するスマートフォ...

データセットに適したクラスタリングアルゴリズムを選択する方法

クラスタリング アルゴリズムを適用するのは、最適なアルゴリズムを選択するよりもはるかに簡単です。 そ...

ViT以外にも、美団、浙江大学などが、視覚タスクのための統合アーキテクチャであるVisionLLAMAを提案した。

過去 6 か月間にわたり、Meta のオープン ソース LLaMA アーキテクチャはテストされ、LL...

ディープラーニングベースの対話状態追跡のレビュー

[[408715]] 1. はじめに1.1 研究の背景インターネットと個人用スマート端末の普及と幅広...

ガートナー:2025年までにベンチャーキャピタル投資の75%がAIを活用して意思決定を行うようになる

海外メディアの報道によると、市場調査会社ガートナーは最近、投資家が人工知能やデータ分析技術をますます...