専門家が最もよく使う機械学習ツール 15 選

専門家が最もよく使う機械学習ツール 15 選

[[323871]]

画像ソース: unsplash

機械学習は素晴らしい技術ですが、その可能性を実現するための鍵は、それを正しく使用することです。機械学習ツールに精通していると、データの処理、モデルのトレーニング、新しい方法の発見、独自のアルゴリズムの作成に役立ちます。

今日では、多数の機械学習ツール、プラットフォーム、ソフトウェアが登場しています。実際に、深く掘り下げるには 1 つだけ選択する必要があります。驚くほど多くのツールがあります。この記事では、専門家が最もよく使用する機械学習ツール 15 個を紹介します。専門家と同じツールを入手してみませんか?

アコード

Accord.net は、画像とオーディオ パッケージを備えた計算機械学習フレームワークです。このようなパッケージは、モデルのトレーニングや、オーディション、コンピューター ビジョンなどのインタラクティブ アプリケーションの作成に役立ちます。ツール名に .net が含まれていることから、このフレームワークの基本ライブラリは C# 言語です。

画像ソース: accord-framework

Accord ライブラリは、オーディオ ファイルのテストと処理に非常に役立ちます。

ラピッドマイナー

RapidMiner は、プログラマー以外のユーザー向けに優れたインターフェースを備えたデータ サイエンス プラットフォームです。 RapidMiner はプラットフォームに依存せず、クロスプラットフォームのオペレーティング システムで動作します。

このツールを使用すると、独自のデータを使用して独自のモデルをテストできます。

さらに、RapidMiner のインターフェースも非常にユーザーフレンドリーです。ユーザーはドラッグアンドドロップするだけです。これは、非プログラマーにとって非常に使いやすい主な理由でもあります。

画像ソース: pinterest

サイキットラーン

Scikit-Learn はオープンソースの機械学習パッケージです。回帰、クラスタリング、分類、次元削減、前処理に使用できる多目的統合プラットフォームです。 Scikit-Learn は、NumPy、Matplotlib、SciPy という 3 つの主要な Python ライブラリ上に構築されています。これ以外にも、テストやモデルのトレーニングにも役立ちます。

テンソルフロー

TensorFlow は、大規模な数値機械学習のためのオープンソース フレームワークです。機械学習とニューラルネットワークのモデルを集めたものです。Python の良き友人でもあります。CPU と GPU の両方で実行できることが最大の特徴です。

TensorFlow は、自然言語処理や画像分類によく使用されます。

ウェカ

Weka もオープンソース ソフトウェアであり、ユーザーはグラフィカル ユーザー インターフェイスを通じて Weka にアクセスできます。このソフトウェアは非常にユーザーフレンドリーで、研究や教育によく使用されます。さらに、Weka を使用すると、ユーザーは R、Scikit-Learn などの他の機械学習ツールにアクセスすることもできます。

クニメ

画像ソース: milearning

Knime は、グラフィカル ユーザー インターフェイス (GUI) に基づくオープン ソースの機械学習ツールです。プログラミングの知識がなくても、Knime が提供するツールを活用できます。 Knime は通常、データ操作、データマイニングなどのデータ関連の目的で使用されます。

Knime は、さまざまなワークフローを作成して実行することでデータを処理します。リポジトリにはさまざまなノードが付属しています。これらのノードを Knime ポータルに取り込むと、ノード ワークフローを作成して実行できます。

ピトーチ

Pytorch は、高速かつ柔軟性に優れたディープラーニング フレームワークです。これは、Pytorch が GPU を非常にうまく制御できるためです。これは、ディープ ニューラル ネットワークの構築やテンソル計算など、機械学習の最も重要な側面に使用されるため、機械学習にとって最も重要なツールの 1 つです。

Pytorch は完全に Python に基づいています。それ以外にも、NumPy の代替ツールとして最適です。

Google Cloud AutoML

Google Cloud AutoML の目標は、誰もが人工知能を利用できるようにすることです。 Google Cloud AutoML は、テキスト認識、音声認識などのさまざまなサービスを作成するための事前トレーニング済みモデルをユーザーに提供します。

Google Cloud AutoML は企業の間で非常に人気があります。同社は業界のさまざまな分野に人工知能を応用したいと考えているが、市場に成熟したAI人材が不足しているため、企業への応用は困難に直面している。

ジュピターノートブック

Jupyter ノートブックは、最も広く使用されている機械学習ツールの 1 つです。非常に高速な処理ツールであり、効率的なプラットフォームです。 Julia、R、Python の 3 つの言語をサポートしています。

Jupyter という名前も、これら 3 つのプログラミング言語を組み合わせたものです。 Jupyter Notebook を使用すると、ユーザーはノートブックの形式で動的コードを保存および共有することができ、WinPythonNavigator や AnacondNavigator などの GUI からもアクセスできます。

Azure 機械学習スタジオ

Azure Machine Learning Studio は、Google の Cloud AutoML と同様に、Microsoft によってリリースされており、ユーザーに機械学習サービスを提供する Microsoft の製品です。

Azure Machine Learning Studio は、モジュールとデータセットを接続する非常に簡単な方法です。 Azure は、ユーザーに AI 機能を提供することも目指しています。 TensorFlow と同様に、CPU と GPU でも実行できます。

オレンジ3

[[323874]]

画像出典: オレンジ

Orange3 はデータ マイニング ソフトウェアであり、Orange ソフトウェアの最新バージョンです。 Orange3 は、前処理、データの視覚化、その他のデータ関連の作業を支援します。ユーザーは AnacondaNavigator を通じて Orange3 にアクセスできます。これは Python プログラミングに非常に役立ちます。さらに、優れたユーザー インターフェイスとしても機能します。

MLLIB

Mahout と同様に、MLLIB も Apache Spark の製品です。回帰、特徴抽出、分類、フィルタリングなどに使用されます。これは一般に Spark MLLIB とも呼ばれ、非常に優れた速度と効率を備えています。

IBMワトソン

IBM Watson は、自然言語処理に基づく人間とコンピュータの対話型質問応答システムである Watson を使用する、IBM が提供する Web インターフェイスです。 Watsonは自動学習や情報抽出などさまざまな分野に応用されています。

画像ソース: 9-medium

IBM Watson は、ユーザーに人間のような体験を提供することを目的として、研究やテストによく使用されます。

アパッチマハウト

Apache がリリースした Hadoop ベースのオープンソース プラットフォームである Mahout は、機械学習やデータ マイニングによく使用され、回帰、分類、クラスタリングなどの手法を実現します。また、ベクトルなどの数学ベースの関数も利用します。

パイラーン2

Pylearn2 は Theano 上に構築された機械学習ライブラリであり、多くの類似した機能を備えています。数学的な計算も実行できます。 Pylearn2 は CPU と GPU でも実行できます。 Pylearn2 に入る前に、ユーザーは Theano に精通している必要があることに注意してください。

画像ソース: unsplash

この記事では、最も人気があり、広く使用されている機械学習ツールをいくつか紹介します。これらのツールはすべて、さまざまなプログラミング言語で実行されます。これらのツールには、Python で実行されるものもあれば、C++ で実行されるもの、Java で実行されるものもあります。

自分に合ったものを選んで試してみてください。見ずにただコードを書くのは良い習慣ではありません。

<<:  決定木のルネッサンス?ニューラルネットワークと組み合わせることで、ImageNetの分類精度が向上し、解釈が容易になります。

>>:  顔合成効果はStyleGANに匹敵し、オートエンコーダである

ブログ    
ブログ    
ブログ    

推薦する

今後のAIの5大発展トレンドとは?2024年は「意味のある人工知能時代」の到来を告げる

生成型人工知能の出現により、人間と人工知能の距離は徐々に縮まっています。これまで関連技術にあまり注意...

...

看護ロボットは医療従事者の仕事に完全に取って代わることができるのでしょうか?

研究によると、共感と前向きな指導は、医師が患者の痛みを和らげ、術後の回復を早め、精神科薬の使用を減ら...

ケンブリッジ大学チームは約50年後に初めて量子スピン液体を検出し、その研究はサイエンス誌に掲載された。

[[439547]]一部の研究者は、量子コンピューターがいつの日かデジタル暗号の解読や薬剤の設計な...

...

...

PULSE: 暗黙の空間に基づく画像超解像アルゴリズム

CVPR 2020 に採択された論文「PULSE: 生成モデルの潜在空間探索による自己教師あり写真ア...

自動化はウエスタン証券のデジタル従業員にとっての出発点

金融テクノロジーと伝統テクノロジーの相互支援は、徐々に証券業界の発展の中核的な原動力となってきました...

RPA大手UiPath独占インタビュー:やがて「1人1台ロボット」の時代が到来

【51CTO.comオリジナル記事】 【はじめに】 2019年後半、RPAは一気に普及したように思わ...

AIの覚醒はなんと恐ろしいことか!人工知能は人間に取って代わり、地球の新たな支配者となるのでしょうか?

人工知能が人類を転覆させるのではないかと人々が心配する理由は2つしかありません。1つ目は、ロボットの...

エッジ AI について知っておくべきことすべて

エッジ AI では、システムを他のシステムに接続する必要がないため、ユーザーはデータをリアルタイムで...

...

...

自動運転の世界情勢を理解するための記事

自動運転前夜2021年、ビル・ゲイツは「すべての家庭にロボットを」と題する記事を発表し、爆弾処理ロボ...

AIは人間の脳を模倣しています! 2021年のトップ10の会議論文: 脳は「教師なし」でも学習する

神経科学は人工知能の「超進化」の鍵となるのか?ディープラーニングやディープニューラルネットワークが流...