GoogleはAIを使って「ヘッドフォンケーブル」をトレーニングし、タッチスクリーンのほとんどの機能を実現

GoogleはAIを使って「ヘッドフォンケーブル」をトレーニングし、タッチスクリーンのほとんどの機能を実現

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

Google は、Levi's と共同で発売したスマート ジャケット Commuter Trucker など、ウェアラブル デバイスの開発を止めたことはありません。

衣服の袖口にセンサーが追加され、ユーザーは Bluetooth リンクを介してセンサーと対話できます。

ダブルクリックやスライドなどで曲の切り替えなどの操作が行えます。

Google は、引き続き努力することで、デバイスをより小型化し、より機能的にしたいと考えています。

その後、Google はヘッドフォン ケーブルに目を向けました。

GoogleのAIエンジニアは、つまむ、こする、持つ、叩くなどのジェスチャーを通じて、従来のタッチスクリーンの機能のほとんどを実現できる電子インタラクティブファブリック(E-Textile)を開発しました。

音量調節、曲の切り替えなどの操作もまったく問題ありません。Google の新機能は、私たちの手を自由にするという究極の目標を掲げ、知覚的インタラクションの次のステップを示しています。

ジェスチャーデータセットのトレーニングプロセス

Google が開発したこのデバイスは、機械学習アルゴリズムとセンサー ハードウェアを組み合わせたもので、ヘッドホン ケーブルは単なるキャリアに過ぎません。

実際、このケーブルは普通のヘッドホンケーブルではなく、センサーが織り込まれた柔軟な電子素材なので、人間とコンピューターの相互作用が可能です。

パーカーもお好みに応じて変形できます。

まず、Google はデータ収集のために 12 人の参加者を募集しました。各参加者は8 つのジェスチャーを 9 回繰り返し、合計 864 個の実験サンプルを作成しました。

サンプルサイズが小さすぎる問題を解決するために、研究者は線形補間を使用して各ジェスチャの時系列を再サンプリングしました。

各サンプルに対して16 個の特徴が抽出され、最終的に80 個の観測値が得られました。

トレーニングされたジェスチャ認識により、ユーザーごとに8 つの新しい個別のジェスチャが可能になります。

研究者たちは、定量的な数字だけでなく参加者の個人的な感情も考慮した、人間中心のインタラクティブな体験を提供したいと考えています。

参加者はランキングやコメントを通じて定性的なフィードバックも提供し、スワイプ、フリック、押す、つまむ、引っ張る、握るなど、さまざまなインタラクション方法を提案しました。

定量分析の結果、インタラクティブ ファブリックは既存のヘッドフォン ボタン コントロールよりも速く認識され、タッチ スクリーンと同等の速度であることが示されました。

定性的なフィードバックからも、電子テキスタイルインタラクションの方がヘッドフォンワイヤーコントロールよりも人気があることが分かります。

研究者はさまざまな使用シナリオを考慮して、さまざまな使用シナリオに合わせてさまざまなデバイスを開発しました。

携帯電話でのメディア再生を制御する電子テキスタイルUSB-C イヤホン、衣服に目に見えない形で音楽コントロールを追加するパーカーの引き紐。

アルゴリズムがジェスチャーを正確に認識

Google にとって電子ファブリックを作る上での難しさは、機械学習アルゴリズムではなく、ヘッドホンコード上のジェスチャーをキャプチャして操作する方法にあります。

サイズ上の理由から、ヘッドフォンケーブルなどの織り素材には、大型で多数のセンサーを装備することができず、その認識能力と解像度は大幅に制限されます。

第二に、人間の手のジェスチャーの曖昧さと不明確さがあります。たとえば、つまむこととつかむことをどのように区別するのでしょうか。また、叩くことと引っ張ることをどのように区別するのでしょうか。

Google のエンジニアは8 つの電極を使用してセンサー マトリックスを形成し、データセットをトレーニング データ用に 8 回、テスト データ用に 1 回に分割し、9 つのジェスチャー変換を取得しました。

彼らは、センサーマトリックスには機械学習分類アルゴリズムに非常に適した固有の関係があることを発見しました。これにより、分類アルゴリズムは限られたデータセットを使用してトレーニングされ、約30秒ジェスチャー認識を実現できます。

最終的な精度は 93.8% で、データセットのサイズと使用したトレーニング時間を考慮すると、日常使用には十分でした。

ヘッドフォンコントロールの次のステップ

今回 Google がヘッドフォン ケーブルに施したトレーニングには、ジェスチャー認識とマイクロインタラクションという 2 つの側面が含まれています。

タッチ スクリーン デバイスでは、画面の下のスペースに、Apple の 3D Touch 認識モジュールなどの多数のセンサーを配置できます。

しかし、ヘッドフォンケーブルなどの外部デバイスの場合、センサーの数とサイズが制限されているため、それほど簡単ではない可能性があります。

実験中、エンジニアは、複数のジェスチャーには複数のトレーニングが必要であり、異なる個々のジェスチャーを複数回キャプチャする必要があることを発見しました。

この研究は、コンパクトなフォームファクターで精密な小規模動作を実現できることを示しており、スマートでインタラクティブなファブリックの開発が期待できます。

ある日。ウェアラブル インターフェースとスマート ファブリックのマイクロ インタラクションは任意に使用できるため、最終的には体外デバイスがどこにでも私たちと一緒に移動し、いつでもインタラクトできるようになり、私たちの手が自由になります。

この日を楽しみにしていますか?

<<:  このおもちゃからヒントを得たアクチュエータは、ソフトロボットにジャンプする能力を与える可能性がある。

>>:  世界初の3D AI合成キャスターがデビューし、2つのセッションの取材にも参加。ネットユーザー:キャスターは失業中

ブログ    
ブログ    

推薦する

Googleの新しいアルゴリズムのおかげで、ロボットが歩くことを学習するのに平均3.5時間しかかからない。

[[317667]]写真: 中空の玄関マットの上で動くレインボーダッシュこの記事はLeiphone...

AIプロジェクトが失敗する6つの理由

データの問題は、企業の AI プロジェクトが意図した目標を達成できない主な理由です。しかし、企業が失...

...

Google が新しい AI ゲームをリリース: 落書きしてワンクリックでモンスターに変身

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

...

「幻獣パル」が大ヒット、大手企業も黙っていられない。このゲームはAIが設計?

最近、多くのソーシャル ネットワーキング プラットフォームに、オープン ワールド サバイバル ゲーム...

インタビュアー: アルゴリズムの時間計算量と空間計算量についてどう思いますか?計算方法は?

[[424483]] 1. はじめにアルゴリズムとは、データを操作し、プログラムの問題を解決するた...

アンビエントコンピューティングが次の大きなトレンドになる理由

アンビエント コンピューティングとは、テクノロジーが環境にシームレスに溶け込み、日常生活に浸透する世...

...

食習慣の変化に伴い、スマートロボットキッチン技術が熱を帯びる

COVID-19パンデミックが続く中、非接触型の食事がますます人気になっています。宅配やテイクアウト...

OpenAI の危機は解決されましたが、人工知能の未来はどこに向かうのでしょうか?

OpenAI は、人工知能 (AI) の作成と推進を専門とする非営利団体です。そのビジョンは、人間...

ホワイトボードに描くだけでコードに変換されます。AI は UI デザイナーに取って代わるのでしょうか?

「新製品のホームページについてどう思いますか?」あなたは、UI、フロントエンド、マーケティング、運...

MIT、筋肉信号を使ってドローンを制御するシステムを開発

MITの研究者たちは、人間とロボットのシームレスなコラボレーションに近づく可能性のある新しいシステム...

「翼竜」が飛び立ち、その威力を発揮。固定翼ドローンについて、あなたはどのくらい知っていますか?

空を飛ぶ龍、数千マイル離れたところから救援に駆けつける!最近、「翼龍」無人機が飛び立ち、被災地に急行...