プログラミングに熟練する必要はありません。人工知能への参入は思っているより簡単です

プログラミングに熟練する必要はありません。人工知能への参入は思っているより簡単です

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discovery)から転載したものです。

[[335936]]

私たちの生活は大部分が反復的で、常に一定のルーチンに従います。身体を生物学的コンピューターと見なすと、脳を制御するコードは次のようになります。

  1. (生!=死)
  2. {
  3. life.wake_Up_In_The_Morning();
  4. 人生.食べる();
  5. life.work (`簡単`、`時間が少ない`、`目的: お金`);
  6. ライフ.スリープ();
  7. }after_Death( "あなたの目的さえもあなたの墓を追わなかった" )

しかし、私たち自身がこのコードの開発者なので、変更する権利があります。私たちにとって、活動的であり続け、楽しめる仕事をすることは非常に重要です。したがって、人工知能に足を踏み入れる前に、今日の世界で人工知能が何をしているのかをすべて理解し、この分野に専念して愛する決意をしなければなりません。

ほとんどの人が犯す間違いは、コンピューター ビジョン、音声認識、予測分析などの AI 作業に Github コードを使用し、それをシステムで実行して、自分を AI エンジニアと呼ぶことです。しかし、そうではありません。この習慣はプロジェクトには役立ちますが、人工知能に対する理解を深めるものではありません。

多くの人は、AI は結果を生成する複雑な Python コードの文字列に過ぎないと考えています。そうではありません。Python は単なるプログラミング言語です。私たちはこの言語(およびあまり一般的に使用されていない他のプログラミング言語)を使用して、AI システムを実行し、結果を生成します。

この Python スクリプトの背後には多くの作業がありますが、成功する AI エンジニアになるためにコーディングに熟練している必要はありません。

人工知能とは何ですか?また、それはどう違うのでしょうか?

図に示すように、人工知能には次のような包含関係があると人々は考えています。

今日のリソースとテクノロジーでは、完全なヒューマノイドシステムを作成することはできません。したがって、私たちは何ができるか、何ができないかを知る必要があります。人工知能の従来の入門は機械学習の概念であり、それぞれがそのロジックに厳密に準拠しています。

機械学習は、人工知能の分野に参入するための優れた出発点です。従来の機械学習アルゴリズムを理解したら、ディープラーニングに移行する必要があります。この分野には多くの概念があり、それらを根本から理解する必要があります。より深い理解を得るには多くの時間がかかります。

機械学習とディープラーニングはどちらも「明示的にコード化されることなく機械によって行われる作業」と定義されており、機械が学習に基づいて動作する能力、つまり人工知能を指します。

これらの概念を理解するにはどうすればよいですか?

これらの概念について話すときはいつでも、1 つのことを覚えておく必要があります。何が含まれるのか? 期待される出力は何か? このように各概念を理解すると、人生は非常にシンプルになります。コンピューターは数字しか学習できないことを忘れてはなりません。そのため、出力を受け取るためには入力をどのように提供すればよいかを理解する必要があります。

大規模な AI システムを実行するには、少しのコーディング知識があれば十分です。機械学習とディープラーニングのあらゆる概念を学びながら、同時にコードを実行するのが最適です。概念を理解したら、次のステップはコードを実装することです。この方法の循環的な操作は、理論を学び、実際の結果をテストするのに役立つ優れた方法です。

この分野で生き残るためには、科学論文やジャーナルを読まなければなりません。科学論文を読むことは一夜にして達成できるものではありません。論文の著者がこのような複雑な出版論文を書くには少なくとも 1 年かかり、私たちはそれを辛抱強く学ばなければなりません。概念の起源から学ぶことで、より深い直感が得られ、より関連性の高い詳細を探求できるようになります。

AI学習を完了するにはどのくらいの時間がかかりますか?

これは時間制限のある課題ではなく、終わりのないトピックです。試験の準備をしていないので、試験日はありません。

別の言い方をすれば、「概念をどれくらい早く学べるか?」ということです。それはすべて個人によって異なります。事前に概念を知っているごく少数の人であれば、2 日で完了できます。数人が1週間で完了しました。人によっては2週間以上かかる場合もあります。目標は、特定の時間内に何かを完了することではなく、主題全体を完了するために必要な時間をかけることです。

概念学習が完了するまで待つ必要がありますか?

不要。実践は最高の教師です。学習中は、学んだ内容に基づいてプロジェクトを実行するのが最善です。すでに CNN の一部を学習しているが、このプロジェクトでは画像に基づいて果物を分類する必要がある場合は、試してみると有益です。

リアルタイムのシナリオで実行してみると、期待どおりの出力が得られるようにエラーを修正することができます。さらに、プロジェクトを実施することで、経験を積むだけでなく、自信を高めることもできます。

正しいアプローチに従い、自分の仕事に満足しているなら、システム コード (この記事の冒頭で説明) を次のように変更できます。

  1. (生!=死)
  2. {
  3. life.wake_Up_In_The_Morning();
  4. 人生.食べる();
  5. life.work (`hard_work`、`patience`、`aim: 幸福平和`);
  6. ライフコード();
  7. ライフ.スリープ();
  8. }after_Death( "世界にあなたについて語らせましょう" );

人工知能の分野に参入するのは難しくありません。これらの方法は著者の経験に基づいています。最初は混乱するかもしれませんが、時間が経つにつれて、問題を解決する方法や手段が見つかります。時間は良い解決策です。あなたの人生に幸あれ!

<<:  機械学習エンジニアは職を失いつつあるが、学習が唯一の解決策であることに変わりはない

>>:  ワクチン開発におけるIoTとAIの役割

ブログ    
ブログ    

推薦する

...

AIの現実世界での最悪の使用例

人工知能(AI)の最悪のシナリオは、ハリウッドの大ヒット映画でおなじみのものだ。人間のような知性と知...

大手企業がどのように人工知能を活用し、実践しているのかご覧ください。

人工知能に関しては、人々は複雑な感情を抱くことが多い。映画ファンなら、ウィル・スミスが『アイ、ロボッ...

新型コロナウイルスによりスマートシティがさらにスマート化

[[373550]]人工知能は、都市をよりスマートで効率的な仕事と生活の場へと変革する道を開きます。...

AI を活用して災害による損失を評価し、救助活動を支援する

地震、ハリケーン、洪水などの自然災害は、広大な地域と何百万人もの人々に影響を及ぼし、物流上の大きな課...

限られたデータでモデルのパフォーマンスを最大化するにはどうすればよいですか? Baidu のエンジニアがデータ拡張サービスを構築

AI モデルの開発プロセスでは、トレーニング データが不十分なためにモデルのパフォーマンス向上が妨げ...

Baidu が公式発表: 自動運転車は 2018 年に量産開始予定!

たった今、百度が公式発表しました。自動運転車は2018年に量産される予定です。 Subversion...

...

...

TensorFlow 2.0「開発者プレビュー」が利用可能になりました

TensorFlow 2.0 プレビューが利用可能になりました。最近、Google AI チームのメ...

指紋、顔、虹彩: 適切な生体認証技術を選択するには?

[[351445]]最近、クレジットカード会社からデータ漏洩に関する連絡がありましたか? あるいは...

...

論文をレビューするための新しい Python プログラム。手動レビューをなくし、arXiv 論文のスコアを自動的に付けます。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

ジェネレーティブ AI における BYOK (Bring Your Own Key) は諸刃の剣

カスタマイズ性と制御性を約束するコンセプトであるBring Your Own Key (BYOK)が...

より安全な街路のためのリアルタイムのインテリジェントビデオ分析

[[401969]]英国政府は最近、夜間経済が回復する中で安全が最優先事項であることを国民に再確認さ...