エッジ AI で建物のシステム障害を回避

エッジ AI で建物のシステム障害を回避

ビルの管理者や運営者は、暖房や冷房、照明システム、エレベーターの故障など、ビルのシステムや設備の予期せぬ故障の影響に直面することがよくあります。最近の調査では、回答者の 98% が、1 時間の停電または機器の停止により、企業に平均 10 万ドルの損害が発生し、大きな経済的負担が生じていると主張しています。

スマートビルディング業界でより高度なセンサーや IoT デバイスが普及するにつれて、予期しないシステム障害を修復するためにビル運営者が利用できる情報量も増加します。 IoT デバイスは大量のデータを生成し、多くの場合、実用的な洞察を生成するためにクラウドに送信されて処理されます。このような大量のデータをクラウドに送信すると、待ち時間が増加し、セキュリティ リスクが生じ、システム構築の効率が低下します。スマートカー、スマートシティ、スマート産業など、あらゆるスマート分野において、運用効率を向上させ、その後の悪影響を防ぐために、リアルタイムの情報に基づいて行動することが非常に重要です。従来の IoT コンピューティングは、ビル管理者が予期しないシステム障害の原因を特定して修復効率を向上させるのに役立ちますが、問題が発生する時期を予測し、そのようなインシデントの発生を事前に防止するのには役立たない可能性があります。

[[339790]]

エッジコンピューティングが答え

エッジ コンピューティングにより、ビル管理者は、分析にリアルタイムの精度を追加することで、サンプリング レートを低下させることなく、データ生成元に近い場所で IoT データを処理できるようになります。オペレーターは、クラウド内の遅延した分析情報に頼るのではなく、リアルタイムの分析情報を活用してシステム障害の原因を特定し、修復を迅速化し、再発を防ぐことができます。

たとえば、エッジ コンピューティングによって得られる洞察により、運用スタッフはエネルギーの需要と使用状況をリアルタイムで監視し、システムの過負荷やそれに伴う非効率性を回避するために運用を積極的にガイドできます。従来、ビル管理者はこうした洞察を得るために公益事業会社からのレポートに依存していましたが、停電が発生してからレポートを受け取るまでに 6 か月以上かかることがあり、使用状況や停電の原因に関する詳細に欠落がありました。

エッジ コンピューティングによって建物の効率とコスト削減を向上させる方法を考えると、システムと機器の障害を最小限に抑えることは、氷山の一角にすぎません。エッジ コンピューティングに AI を追加すると、ビル管理者は AI を組み合わせたパワーを活用して、インテリジェントでプロアクティブな予防保守機能を実現できるようになります。

エッジAI予測メンテナンス

エッジ AI により、建物の IoT システムは運用を効果的に監視し、より深い洞察を提供できるようになります。このようなシステムは、複数のデバイス間でデータパターンを感知し、データをリアルタイムで相関させて分析することができます。これらの洞察により、潜在的な非効率性やシステム障害が発生する前に、オペレーターに事前に警告することができます。

エッジ AI 対応の運用インテリジェンスにより、システム効率が最大化され、オペレーターは急速に変化する状況に対応できるようになります。たとえば、人の動きを感知して、建物が突然閉鎖された場合に、その部屋の暖房、冷房、照明を通常レベルまで抑えることができれば、エネルギーとコストを節約できます。さらに、エネルギー効率と設備の考慮事項を満たしながら、リアルタイムの室内の動態、占有レベル、外部の気象要因に基づいて建物内の気候の快適性が提供されます。

処方的メンテナンスを使用すると、システムのダウンタイムを最小限に抑え、機械システムの寿命を延ばしながら、高額な修理およびメンテナンスのコストを削減できます。さらに、エネルギー使用の最適化により、建物の効率をリアルタイムで監視するタスクを自動化できるだけでなく、オペレーターは信頼性、パフォーマンス、コストのバランスをとることができます。

エッジAIのメリットについて詳しく見る

エッジ AI は、管理者やオペレーターがメンテナンスの必要性を予測し、予期しないシステムや機器の障害を減らすだけでなく、次のようなことも実行するのに役立ちます。

  • 体温上昇の監視、社会的距離の監視、関連する視覚ベースのセンサーによるマスク検出など、乗員の健康と規制遵守を監視します。
  • ビル管理者がエッジ AI を使用してエレベーター、火災警報器、消火器などの重要なシステムを監視することで、ビルの資産とサービスをより有効に活用できます。

エッジ AI により、建設監督者は建物の全体像を把握し、継続的に改善することができます。システムと機器の中断を最小限に抑えることで、運用効率が向上し、居住者の快適性を高めるための積極的な対策が容易になります。

予測メンテナンスなど

関心のあるイベントが発生したとき(または発生する前に)行動し対応する能力は、状況情報と運用の有効性にとって重要です。機械学習を活用したエッジ AI は、モノのインターネットの中核を成し、予期せぬ建物システムや機器の故障が生産性レベルやビジネス全体に悪影響を与えない世界に私たちを近づけます。エッジ AI テクノロジーの進歩を活用することで、組織はコスト削減を図りながら、居住者に安全で快適な建物環境を提供する効率性を高めることができます。

<<:  競争相手に差をつけるための機械学習プロジェクトのアイデア 8 つ

>>:  2020 年のディープラーニング フレームワークの簡単な比較

ブログ    

推薦する

...

散乱アルゴリズムの3つのソリューションとその選択シナリオ

背景分割とは、推奨、広告、検索システムの結果に基づいてユーザーの視覚的なエクスペリエンスを向上させる...

コビオニクス、針を使わずにワクチンを投与する新しいロボットを開発

BGR によれば、注射針に対する恐怖は人口の少なくとも 10% を悩ませており、あらゆる種類のワクチ...

ジャック・マー氏:教育はデジタル時代に合わせて変えなければならない、そうでなければ子どもたちは機械と競争できなくなる

9月23日、ジャック・マー氏は国連総会で、デジタル時代を理解し、参加し、受け入れるためには教育改革が...

...

自動運転の時代が加速するにつれ、支援システムは自動車の標準装備になるかもしれない

近年、自動運転分野で優位に立ち、自動車産業の発展の主導権を握るために、多くの国が自動運転の路上テスト...

機械学習は増加傾向にありますが、そのアルゴリズムの結果は公正なのでしょうか?

アルゴリズムは驚くべき方法で私たちの生活をコントロールしています。地元のデリのカウンターで番号を受け...

Google の優れた NLP 事前トレーニング モデルはオープンソースで、BERT に勝る

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

AIはサプライチェーンの脆弱性をある程度軽減できる

今日の緊迫したサプライチェーンにおいて、最も脆弱なのはスキル不足である可能性があり、景気後退により短...

...

マイクロソフト、生成AIシステムのリスクを特定するためのPyRITをリリース

海外メディアの報道によると、マイクロソフトは2月26日、生成AIシステムのリスクを積極的に特定するた...

医療業界におけるAIアプリケーションは「ゴミを入れればゴミが出る」という状況を避けるべき

ヘルスケア業界における人工知能と機械学習の価値と将来についての認識には大きな変化がありました。業界は...

Go言語で遺伝的アルゴリズムを実装する方法

ただの楽しみのために、Go 言語を学ぶことにしました。新しい言語を学ぶ最良の方法は、深く学び、できる...

フロントエンド上級編: よく使われるいくつかの JS 検索アルゴリズムの概要とパフォーマンス比較

[[356180]]序文今日は引き続き js アルゴリズムについてお話ししましょう。以下の説明を通じ...