競争相手に差をつけるための機械学習プロジェクトのアイデア 8 つ

競争相手に差をつけるための機械学習プロジェクトのアイデア 8 つ

この記事は、公開アカウント「Reading the Core」(ID: AI_Discovery)から転載したものです。

本から学ぶことは常に表面的なものです。本当に理解するには、自分で実践しなければなりません。チュートリアルを見るだけでは十分ではなく、実践を通じて実際の内容をどんどん習得する必要があります。選択できるクリエイティブな機械学習プロジェクトを 8 つご紹介します。今すぐ行動しましょう。

[[339827]]

1. ソーシャルメディア投稿に基づくうつ病の分析

世界中で2億6,400万人以上がうつ病に苦しんでいます。うつ病は世界中で障害や病気の主な原因であり、毎年約 80 万人が自殺しています。自殺は 15 歳から 29 歳の人の間で 2 番目に多い死亡原因です。対照的に、うつ病の治療は不十分で、時期尚早で、不正確であることが多いです。

インターネットは、特に若者の間で、うつ病の初期段階を変える機会を提供します。 Twitter では、常時約 35 万件のツイートが送信されており、毎日 5 億件、年間約 2,000 億件のツイートが送信されています。

ピュー・リサーチ・センターによれば、72%の人が生計を立てるためにインターネットに依存しているそうです。ソーシャルネットワークによって公開されるデータセットは、人文科学や脳研究など多くの分野にとって重要です。ソーシャルメディアの投稿内の言語マーカーを分析することで、従来の方法よりもはるかに速く、個人にメンタルヘルスの状態に関する洞察を提供するためのディープラーニングモデルを構築できます。

2. ニューラルネットワークを使用してスポーツゲームのビデオをテキスト要約に変換する

[[339828]]

画像ソース: Unsplash

このプロジェクトのアイデアは、スポーツゲームのビデオから正確な要約を取得し、そのハイライトをスポーツウェブサイトで公開することです。科学者たちはテキスト要約を抽出するためのさまざまなモデルを提案してきましたが、ニューラル ネットワークが最も効果的です。一般的に、要約とは、事実や情報の重要性を確かめながら伝えることに重点を置いた、簡潔な構造で情報を簡潔に紹介することです。

ゲーム ビデオの要約を自動的に生成すると、ゲームのハイライトを特定するのが難しくなります。

上記のタスクを実行するには、3D-CNN(3次元畳み込みニューラルネットワーク)、RNN(リカレントニューラルネットワーク)、LSTM(長短期記憶ニューラルネットワーク)などのディープラーニング技術を使用できます。また、機械学習アルゴリズムを使用してビデオをさまざまな部分に分割し、SVM(サポートベクターマシン)、NN(ニューラルネットワーク)、k-meansアルゴリズムを適用することもできます。

3. CNNを使用した手書き方程式ソルバー

手書きの数式を認識することは、コンピューター ビジョン研究における最も難解な問題の 1 つです。畳み込みニューラル ネットワーク (CNN) といくつかの画像処理技術を使用して、手書きの数字と数学記号を使用する手書き方程式ソルバーをトレーニングできます。このようなシステムを開発するには、機械が十分に学習して望ましい予測を行えるように、データを使って機械をトレーニングする必要があります。

4. NLPを使用してビジネス会議の要約を生成する

誰かがレポート全体ではなく要約だけを読みたいと言っている状況に遭遇したことはありませんか?学生時代、私は完全なレポートを準備するのに多くの時間を費やすことがよくありましたが、教師は要約しか見る時間がありませんでした。

要約は、データの過負荷を解決するための止められない効果的な方法になりました。会話から情報を抽出することは、商業的にも教育的にも大きな価値があり、会話構造の統計的、言語的、感情的な特徴を捉えることで実現できます。

レポートを手動で要約に変換するのは時間がかかりすぎるため、自然言語処理 (NLP) テクノロジの助けを借りて実行できます。ディープラーニングを使用したテキスト要約技術は、テキスト全体の文脈を理解することができるため、文書を素早く要約する必要がある人にとっては朗報です。

5. 顔認識による感情に基づいて適切な曲を推奨する

[[339829]]

画像ソース: unsplash

顔は体の重要な部分であり、個人の精神状態を理解する上で重要な役割を果たします。顔認識による曲の推奨により、手動で曲をグループ化する面倒な手順がなくなり、個人の感情的特性に基づいて適切なプレイリストを生成できます。

人々は気分や興味に応じて曲を聴く傾向があります。ユーザーの表情を捉え、感情に応じて適切な曲を推奨するアプリを作成できます。

コンピューター ビジョンは、デジタル画像やビデオの高度な理解をコンピューターに伝えるのに役立つ学際的な分野です。コンピューター ビジョンのコンポーネントを使用すると、顔の表情からユーザーの感情を判断できます。

6. ケプラーなどの宇宙探査機が撮影した画像から居住可能な太陽系外惑星を探す

過去10年間、科学者たちは太陽系を通過する惑星を特定するために100万個以上の恒星を監視してきた。潜在的な太陽系外惑星候補の手動解釈は、労働集約的で、人為的ミスが発生しやすく、評価が困難です。畳み込みニューラル ネットワークは、ノイズの多い時系列データ内で地球に似た太陽系外惑星を識別するのに、最小二乗法よりも適しています。

7. 損傷した古いフィルム写真の再生

[[339830]]

画像出典: Pikist

古い写真を復元するのはどれだけ時間がかかり、面倒なことかはわかっています。そこで、ディープラーニングを使用して写真上のすべての欠陥(破損、傷、穴)を見つけ、周囲のピクセル値から欠陥を簡単に見つけることができる画像復元アルゴリズムを使用して、古い写真を復元してカラー化することを検討できます。

8. ディープラーニングを使用して音楽を生成する

音楽はさまざまな周波数の音の組み合わせであり、自動音楽生成は人間の介入を最小限に抑えて短い音楽を作成するプロセスです。最近、ディープラーニング エンジニアリングは、プログラムで生成される音楽の最前線になっています。

(https://medium.com/analytics-vidhya/music-generation-using-deep-learning-a2b2848ab177)

プロジェクトのトピックを探すときは、大胆な仮定を立てて注意深く観察する必要があります。まだトピックの選択に苦労している場合は、上記のアイデアのいずれかを試してみてはいかがでしょうか。

<<:  AI が「もや」を取り除くのに役立ちます: うつ病の治療における機械学習の応用

>>:  エッジ AI で建物のシステム障害を回避

ブログ    
ブログ    

推薦する

ブロックチェーンにおける主流のコンセンサスアルゴリズムの簡単な分析

プルーフ・オブ・ワーク最も一般的なブロックチェーンのコンセンサス アルゴリズムは、ビットコインのプル...

マイクロソフトはOpenAIの警告を無視し、未熟なBingチャットサービスを開始したと報じられている。

マイクロソフトのBing AIチャットボットは、最初にリリースされたときに論争と混乱を巻き起こしたが...

OpenAIがSoraを発表: 現実を再定義する画期的なビデオ生成モデル

概要:ほんの数日前、ビッグ アイヴァンが携帯電話でソーシャル メディアをちょっとチェックしたとき、信...

人工知能はどれくらい怖いのでしょうか?ホーキング博士はなぜ人々に慎重になってほしいのでしょうか?本当に40%の雇用が失われるのでしょうか?

ビル・ゲイツ氏はまた、現在私たちに安心感を与えている人工知能が、最終的には現実世界に脅威を与える可能...

今年、AIがサイバーセキュリティに影響を及ぼす可能性がある3つの重要な方法

この記事では、超強力なソーシャル攻撃から AI 搭載 PC まで、AI が今年サイバーセキュリティを...

データ構造とアルゴリズム: K 回の否定後の配列の合計を最大化する

[[435915]] K回の反転後の配列の最大合計LeetCode の問題へのリンク: https:...

音声認識を開発する方法

ディープラーニング技術を用いた自然言語の深い理解は、常に注目されてきました。自分で音楽を調べる必要が...

...

機械学習入門

1. 機械学習の定義機械学習はコンピュータサイエンスのサブフィールドであり、人工知能の分野および実装...

オックスフォード大学の科学人気記事、数分でわかる「機械学習とは何か」

[[389147]]人間は経験を通して学び、成長する能力を持っている学習能力と経験を通じてタスクを...

機械学習プロジェクトにおけるデータの前処理とデータ ラングリング

要点一般的な機械学習/ディープラーニング プロジェクトでは、データ準備が分析パイプライン全体の 60...

...

...

...