よりスマートに:人工知能とエネルギー産業の革命

よりスマートに:人工知能とエネルギー産業の革命

人工知能は私たちの生活、仕事、遊び方に革命をもたらそうとしているが、Amazon の Alexa や Apple の Siri を超えてこの技術が何を実現できるかを知っている人はほとんどいない。これらは、仮想アシスタントまたは「弱い AI」テクノロジーの例であり、AI アプリケーションの最も一般的な例です。しかし、データ駆動型のエネルギー分野では、高度な機械学習が「強力なAI」による効率、予測、取引、ユーザーアクセシビリティの向上への道を切り開いています。

[[340256]]

電力取引

電気は、公開市場で売買および取引できる商品です。これらの市場が効率的に運営されるためには、電力の売り手、買い手、ブローカーが天気予報から電力網の需要と供給のバランスまで、膨大なデータを絶えず分析する必要があります。データを最もよく理解できる人が市場で競争上の優位性を獲得するでしょう。

2018年、IBMのDeepMindは、中規模都市に電力を供給するのに十分な米国中部のGoogleの風力発電容量に機械学習アルゴリズムを適用し始めました。天気予報と過去のタービンデータのニューラル ネットワークを使用することで、最大 36 時間先までの風力出力を合理的に予測できます。 DeepMind の機械学習アルゴリズムは、1 年足らずで、ベースライン シナリオと比較して風力エネルギーの価値を約 20% 増加させました。

インテリジェントな電力消費

米国の電力顧客のほぼ半数がスマートメーターを導入しており、個々のエネルギー消費に関するデータを提供することで、消費者はエネルギー使用を自己管理できるようになっている。

新しい AI 駆動型スマートメーターやスマートホームソリューションはまだ普及していませんが、エンドユーザーにとっての効率性の向上は大きな恩恵となる可能性があります。これらのエネルギー監視デバイスは他の家庭用デバイスと通信し、エネルギーの無駄を減らすことで住宅所有者の費用を節約します。たとえば、これらのデバイスは、エアコンを制御したり、電気料金が安い特定の時間帯に電気自動車の充電を提案したり、照明を制御したり、家電製品を管理したりすることができます。

これらのデバイスは、使用パターンやエネルギー価格に適応して反応する能力を備えているため、より広い範囲に適用すれば大幅なエネルギー節約につながる可能性があります。広範囲に導入されれば、より環境に優しく、より安定した電力網をすべての人々に提供できるでしょう。

スマートエネルギーストレージ

AI は、再生可能エネルギー用のマイクログリッド、公益事業規模のバッテリー ストレージ、揚水発電などの独自のテクノロジを統合する方法を簡素化することで、既存のエネルギー ストレージ テクノロジを改善できる可能性があります。風力や太陽光などの間欠的な電源が急増するにつれて、現代の電力網におけるエネルギー貯蔵の役割は急速に拡大しており、電力ブローカーには需要と供給のバランスを取るプレッシャーが高まっています。技術が向上し、コストが下がるにつれて、スマートエネルギーストレージはグリッドの補助サービスにおいてますます重要な役割を果たし、グリッドオペレーターが発電機からユーザーへのエネルギーの転送のバランスを取り、サポートするのに役立ちます。


AI は、需要と供給のギャップが生じているときに、より効率的な割り当てを可能にし、それによって他の場所で電力を節約し、後で使用することを可能にします。複数の異なるストレージ システムを統合することで、その効果を最大限に高められるだけでなく、スマート エネルギー ストレージ システムは、断続的な発電による周波数と電圧の制御を改善することで、安全性をさらに高めることもできます。ベルリンに本拠を置くエネルギー貯蔵会社 Younicos は、2005 年以来、このような統合エネルギーシステムの開発と導入において世界的な市場リーダーとなっています。

ロボット

電力分野における AI 技術の注目すべき応用例の 1 つは、危険な状況で人間の代わりに行動できる自律型ロボットの開発です。これらの自律型無人機械は、陸上の高圧電線を調査したり、海底を巡回して貴重な資源を探したり、人命を危険にさらすことなく将来の採掘に備えて資源の位置を記録して報告したりすることができます。

そうしたプロジェクトの 1 つが、MIT エネルギー イニシアチブを通じてエクソンモービルと MIT が行っている双方向のコラボレーションであり、自律型ロボットが複雑なタスクを独立して実行できる能力をさらに開発することを目指しています。 MITのブライアン・ウィリアムズ教授と彼のチームは、自己学習型ロボットが火星探査車キュリオシティを模倣し、海底を探査してさらなる開発と活用を行うことを計画している。エクソンモービルのMIT潜水ロボットプロジェクトの元主任顧問で地質学者のロリ・スンマ氏は、そこでのイノベーションは「将来の課題に対応するためにエネルギー研究の範囲を覆す」ために非常に重要だと語った。

エネルギーの未来

世界のエネルギーシステムもCOVID-19パンデミックの影響を受けており、経済効率の向上に新たな焦点が当てられています。この目的のために、市場参加者は機械学習を使用して予測機能を改善し、エネルギー取引の透明性を高め、再生可能エネルギーを統合し、スマートグリッドとストレージを管理し、無人ドローンを実現しています。

強力な AI とエネルギー業界の融合は、世界中の消費者に多大な広範囲にわたる影響を及ぼすでしょう。ビル・ゲイツは2017年度の卒業生にこう語りました。

「もし私が今日、世界に大きな影響を与える機会を探しているとしたら、次の分野を検討するでしょう。1つは人工知能です。私たちは、人々の生活をより生産的で創造的にする方法を取り入れ始めたばかりです。2つ目はエネルギーです。エネルギーをクリーンで手頃な価格で信頼できるものにすることは、貧困をなくし、気候変動に対処するために不可欠だからです。」

<<:  ドローン技術はスマートシティの発展をどのように促進できるのでしょうか?

>>:  一枚の写真で3D顔モデリングを実現!中国科学院の博士課程学生による ECCV に関する新たな研究 | オープンソース

ブログ    
ブログ    

推薦する

いくつかの特徴選択方法を比較すると、どれが優れているでしょうか?

[[403820]]この記事はWeChat公式アカウント「DATA STUDIO」から転載したもの...

AIがDevOpsを加速させる10の方法

今年初めに発表されたデロイトのレポートによると、AIベースのソフトウェア開発ツールを提供するスタート...

TensorFlow2 を使用してアラビア語の手書き文字データセットを認識する方法を説明します

[[405478]]このチュートリアルでは、TensorFlow (Keras API) を使用して...

UBS: AI需要は2022年から2027年の間に年平均61%の成長率で増加すると予想

金融投資機関UBSは最近、人工知能端末の需要に関する長期予測を、2020年から2025年までの年平均...

手書き認識のための単層基本ニューラルネットワーク

[[214992]]まず、コードテンソルフローをインポートする tensorflow.example...

ChatGPT が突然大きなバグを発見しました!フル機能のGPT-4は無料で使用でき、ネットユーザーは大喜びしている

11月15日、OpenAIは突然、ChatGPT Plusの新規ユーザー登録を停止すると発表しました...

...

...

データ、アルゴリズム、処理は人工知能にとって不可欠である

[[276859]]人工知能プロジェクトにおいて、最も重要なのはデータ、アルゴリズム、プロセスのうち...

マイクロソフトが27億パラメータのPhi-2モデルを発表、多くの大規模言語モデルを上回る性能を発揮

マイクロソフトは、Phi-2 と呼ばれる人工知能モデルをリリースしました。このモデルは、その 25 ...

モノのインターネット向けのデータストリーミング、AI、機械学習プラットフォームを構築する方法

[[342159]]今日の IoT のユースケースでは、デバイスが生成した大量のデータを分析したり、...

工業情報化部:中国初の個人情報保護AIモデル「智慧」アシスタントをリリース

2月29日、工業情報化省は2023年第4四半期の電気通信サービスの品質に関する通知を発行した。通知で...

フェイフェイ・リー氏のチームは、一人暮らしの高齢者のCOVID-19症状を監視する家庭用AIシステムを開発

[[321322]]フェイフェイ・リーCOVID-19パンデミックにより、高齢者の介護はさらに困難に...

3分レビュー:2021年10月の自動運転業界の完全な概要

チップ不足と疫病の影響により、今年初めから自動運転産業の発展は減速を余儀なくされたが、数か月の回復を...