基礎知識がない人でも機械学習に切り替えることは可能ですか?

基礎知識がない人でも機械学習に切り替えることは可能ですか?

基礎知識がない人でも機械学習に切り替えることは可能ですか?機械学習には一定の数学的基礎が必要であり、関連する知識がない人は再学習する必要があります。機械学習への転職は、誰にでも適しているわけではありません。転職できるかどうかは、あなた自身の具体的な状況によって異なります。機械学習を始めるには一定の基準があるため、慎重に判断する必要があります。

[[348076]]

あらゆる機械学習システムの重要な部分はデータです。追加のアルゴリズム、巧妙なプログラミング、およびより正確なデータ オプションのホストを許可します。

機械学習とは何ですか? 機械学習は人工知能のサブセットであり、機械を使用して過去の経験から学習します。開発者がプロ​​グラムするあらゆる潜在的な条件を予測する必要がある従来のプログラミングとは異なり、機械学習ソリューションはデータに基づいて出力を効果的に適応させることができます。

機械学習アルゴリズムは実際にコードを記述するのではなく、現実世界のコンピューター モデルを構築し、そのモデルをデータでトレーニングします。

機械学習の仕組み: スパム フィルタリングは、統計的手法を使用して何百万もの電子メールからスパムを識別する方法を学習する機械学習手法を使用する良い例です。

例: 「安い」や「バイアグラ」という単語を含む 100 通の電子メールのうち 85 通がスパムであると判断された場合、その電子メールがスパムである確率は 85% であると言えます。これを他のいくつかの指標(たとえば、メールを送信したことがない人)と組み合わせ、数十億件のメールを使用してアルゴリズムをテストし、トレーニング セッションの数が増えるにつれて精度が向上します。

ディープラーニングは人工知能と同じではありません。単なるアルゴリズムであり、通常の機械学習アルゴリズムと同様に、問題を解決する方法です。人工知能、機械学習、ディープラーニングの関係をしっかりと区別するならば、下図のようになると考えられます。人工知能は広い概念であり、機械学習はそのサブセットであり、ディープラーニングは機械学習のサブセットです。

ディープラーニングは新しい技術ではありません。ディープラーニングの概念は、人工ニューラルネットワークの研究から生まれました。汎用コンピュータが登場する前の 1940 年代に、科学者は人工ニューラルネットワークの概念を提唱しました。当時、コンピューターは開発が始まったばかりで、非常に低速でした。最も単純なネットワークでさえトレーニングに数日かかり、非常に非効率的でした。そのため、コンピューターはその後 10 年ほど広く使用されることはありませんでした。近年、コンピューティング能力の向上と GPU および TPU の応用により、ニューラル ネットワークは大きな進歩を遂げました。

機械学習手法と同様に、ディープラーニング手法も教師あり学習と教師なし学習に分けられます。たとえば、畳み込みニューラル ネットワーク (CNN) は、深層教師あり学習による機械学習モデルであり、ディープ ビリーフ ネット (DBN) は、教師なし学習による機械学習モデルです。ディープラーニングの「深さ」とは、「入力層」から「出力層」までの層の数、つまり「隠れ層」の数を指します。層の数が多いほど、深さが深くなります。

したがって、選択問題が複雑になるほど、必要な深さのレベルも高くなります。レイヤーの数が多いことに加えて、各レイヤー内の「ニューロン」(小さな円)の数も大きくする必要があります。たとえば、AlphaGo のポリシー ネットワークには 13 層があり、各層には 192 個のニューロンがあります。ディープラーニングの本質は、多くの隠れ層と膨大なトレーニングデータを持つ機械学習モデルを構築することで、より有用な特徴を学習し、最終的に分類や予測の精度を向上させることです。

<<:  希望の産業:AIが屋内農業を再定義

>>:  世界経済フォーラムの報告: 5年以内に8,500万の仕事が機械に置き換えられる可能性がある

ブログ    

推薦する

OpenAI が ChatGPT にマルチモーダル入力機能を追加しました。ご存知ですか?

OpenAIのCEO、サム・アルトマン氏は昨夜Twitterで、ChatGPTに音声と画像の機能が...

人工知能がサービスと運用管理を改善する10の方法

ヨーロッパの多国籍通信会社は、BMC の Helix Chatbot を標準化して、全部門の 120...

韓国が世界初の常温超伝導体を開発? 127度での超伝導、再現できればノーベル賞確実

常温・常圧超伝導が再び突破された?今回は韓国の科学者たちです。彼らは、世界初の常温常圧超伝導体、すな...

ソフトウェアテストに AI を統合する 9 つのメリット

[[390945]] [51CTO.com 速訳]人工知能の普及は人々に大きな期待をもたらしました。...

無人タクシーが登場します。準備はできていますか?

[[243616]]地図: 小魚クラウド コンピューティングやビッグ データなどのアプリケーション...

スタンフォード大学の10のグラフはAI開発の新たなトレンドを分析している

スタンフォード大学のAI 100のAI Indexプロジェクトは、人工知能の活動と進歩を追跡し、人工...

...

GPT-4はますます愚かになり、過去の返信をキャッシュしていることが明らかになりました。ジョークが800回言われても、新しい返信は聞きません。

一部のネットユーザーは、GPT-4 が「愚か」になったことを示す別の証拠を発見しました。彼はこう質問...

サイバーセキュリティにおける AI: 誇大宣伝と現実

人工知能(AI)の可能性は魅力的です。セキュリティ管理者への警鐘。自律的な自己学習ソリューションの力...

自動運転車は見たことのない物体を避けることができないのか?問題はトレーニングパイプラインにある

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

...

人工知能の時代においても、人間同士の交流は依然として重要である

実際、AI はほとんどの人間同士のやり取りに取って代わっています。デジタルアシスタントや AI ベー...

TensorFlow の基礎から実践まで: 交通標識分類ニューラル ネットワークの作成方法を段階的に学習します

[[198754]] TensorFlow は、最も人気のあるディープラーニングフレームワークになり...